// // Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo // // The contents of this file are covered under the licence agreement in the // file "LICENCE" distributed with Cforall. // // Specialize.cc -- // // Author : Richard C. Bilson // Created On : Mon May 18 07:44:20 2015 // Last Modified By : Peter A. Buhr // Last Modified On : Thu Mar 16 07:53:59 2017 // Update Count : 31 // #include // for assert, assertf #include // for back_insert_iterator, back_i... #include // for _Rb_tree_iterator, _Rb_tree_... #include // for unique_ptr #include // for string #include // for get #include // for pair #include "Common/PassVisitor.h" #include "Common/SemanticError.h" // for SemanticError #include "Common/UniqueName.h" // for UniqueName #include "Common/utility.h" // for group_iterate #include "GenPoly.h" // for getFunctionType #include "InitTweak/InitTweak.h" // for isIntrinsicCallExpr #include "Parser/LinkageSpec.h" // for C #include "ResolvExpr/FindOpenVars.h" // for findOpenVars #include "ResolvExpr/TypeEnvironment.h" // for OpenVarSet, AssertionSet #include "Specialize.h" #include "SynTree/Attribute.h" // for Attribute #include "SynTree/Declaration.h" // for FunctionDecl, DeclarationWit... #include "SynTree/Expression.h" // for ApplicationExpr, Expression #include "SynTree/Label.h" // for Label #include "SynTree/Mutator.h" // for mutateAll #include "SynTree/Statement.h" // for CompoundStmt, DeclStmt, Expr... #include "SynTree/Type.h" // for FunctionType, TupleType, Type #include "SynTree/TypeSubstitution.h" // for TypeSubstitution #include "SynTree/Visitor.h" // for Visitor namespace GenPoly { struct Specialize final : public WithTypeSubstitution, public WithStmtsToAdd, public WithVisitorRef { Expression * postmutate( ApplicationExpr *applicationExpr ); Expression * postmutate( CastExpr *castExpr ); void handleExplicitParams( ApplicationExpr *appExpr ); Expression * createThunkFunction( FunctionType *funType, Expression *actual, InferredParams *inferParams ); Expression * doSpecialization( Type *formalType, Expression *actual, InferredParams *inferParams ); std::string paramPrefix = "_p"; }; /// Looks up open variables in actual type, returning true if any of them are bound in the environment or formal type. bool needsPolySpecialization( Type *formalType, Type *actualType, TypeSubstitution *env ) { if ( env ) { using namespace ResolvExpr; OpenVarSet openVars, closedVars; AssertionSet need, have; findOpenVars( formalType, openVars, closedVars, need, have, false ); findOpenVars( actualType, openVars, closedVars, need, have, true ); for ( OpenVarSet::const_iterator openVar = openVars.begin(); openVar != openVars.end(); ++openVar ) { Type *boundType = env->lookup( openVar->first ); if ( ! boundType ) continue; if ( TypeInstType *typeInst = dynamic_cast< TypeInstType* >( boundType ) ) { // bound to another type variable if ( closedVars.find( typeInst->get_name() ) == closedVars.end() ) { // bound to a closed variable => must specialize return true; } // if } else { // variable is bound to a concrete type => must specialize return true; } // if } // for // none of the type variables are bound return false; } else { // no env return false; } // if } /// True if both types have the same structure, but not necessarily the same types. /// That is, either both types are tuple types with the same size (recursively), or /// both are not tuple types. bool matchingTupleStructure( Type * t1, Type * t2 ) { TupleType * tuple1 = dynamic_cast< TupleType * >( t1 ); TupleType * tuple2 = dynamic_cast< TupleType * >( t2 ); if ( tuple1 && tuple2 ) { if ( tuple1->size() != tuple2->size() ) return false; for ( auto types : group_iterate( tuple1->get_types(), tuple2->get_types() ) ) { if ( ! matchingTupleStructure( std::get<0>( types ), std::get<1>( types ) ) ) return false; } return true; } else if ( ! tuple1 && ! tuple2 ) return true; return false; } // walk into tuple type and find the number of components size_t singleParameterSize( Type * type ) { if ( TupleType * tt = dynamic_cast< TupleType * >( type ) ) { size_t sz = 0; for ( Type * t : *tt ) { sz += singleParameterSize( t ); } return sz; } else { return 1; } } // find the total number of components in a parameter list size_t functionParameterSize( FunctionType * ftype ) { size_t sz = 0; for ( DeclarationWithType * p : ftype->get_parameters() ) { sz += singleParameterSize( p->get_type() ); } return sz; } bool needsTupleSpecialization( Type *formalType, Type *actualType ) { // Needs tuple specialization if the structure of the formal type and actual type do not match. // This is the case if the formal type has ttype polymorphism, or if the structure of tuple types // between the function do not match exactly. if ( FunctionType * fftype = getFunctionType( formalType ) ) { if ( fftype->isTtype() ) return true; // conversion of 0 (null) to function type does not require tuple specialization if ( dynamic_cast< ZeroType * >( actualType ) ) return false; FunctionType * aftype = getFunctionType( actualType->stripReferences() ); assertf( aftype, "formal type is a function type, but actual type is not: %s", toString( actualType ).c_str() ); // Can't tuple specialize if parameter sizes deeply-differ. if ( functionParameterSize( fftype ) != functionParameterSize( aftype ) ) return false; // tuple-parameter sizes are the same, but actual parameter sizes differ - must tuple specialize if ( fftype->parameters.size() != aftype->parameters.size() ) return true; // total parameter size can be the same, while individual parameters can have different structure for ( auto params : group_iterate( fftype->parameters, aftype->parameters ) ) { DeclarationWithType * formal = std::get<0>(params); DeclarationWithType * actual = std::get<1>(params); if ( ! matchingTupleStructure( formal->get_type(), actual->get_type() ) ) return true; } } return false; } bool needsSpecialization( Type *formalType, Type *actualType, TypeSubstitution *env ) { return needsPolySpecialization( formalType, actualType, env ) || needsTupleSpecialization( formalType, actualType ); } Expression * Specialize::doSpecialization( Type *formalType, Expression *actual, InferredParams *inferParams ) { assertf( actual->result, "attempting to specialize an untyped expression" ); if ( needsSpecialization( formalType, actual->get_result(), env ) ) { if ( FunctionType *funType = getFunctionType( formalType ) ) { if ( ApplicationExpr * appExpr = dynamic_cast( actual ) ) { return createThunkFunction( funType, appExpr->get_function(), inferParams ); } else if ( VariableExpr * varExpr = dynamic_cast( actual ) ) { return createThunkFunction( funType, varExpr, inferParams ); } else { // This likely won't work, as anything that could build an ApplicationExpr probably hit one of the previous two branches return createThunkFunction( funType, actual, inferParams ); } } else { return actual; } // if } else { return actual; } // if } /// restructures the arguments to match the structure of the formal parameters of the actual function. /// [begin, end) are the exploded arguments. template< typename Iterator, typename OutIterator > void structureArg( Type * type, Iterator & begin, Iterator end, OutIterator out ) { if ( TupleType * tuple = dynamic_cast< TupleType * >( type ) ) { std::list< Expression * > exprs; for ( Type * t : *tuple ) { structureArg( t, begin, end, back_inserter( exprs ) ); } *out++ = new TupleExpr( exprs ); } else { assertf( begin != end, "reached the end of the arguments while structuring" ); *out++ = *begin++; } } /// explode assuming simple cases: either type is pure tuple (but not tuple expr) or type is non-tuple. template< typename OutputIterator > void explodeSimple( Expression * expr, OutputIterator out ) { if ( TupleType * tupleType = dynamic_cast< TupleType * > ( expr->get_result() ) ) { // tuple type, recursively index into its components for ( unsigned int i = 0; i < tupleType->size(); i++ ) { explodeSimple( new TupleIndexExpr( expr->clone(), i ), out ); } delete expr; } else { // non-tuple type - output a clone of the expression *out++ = expr; } } struct EnvTrimmer { TypeSubstitution * env, * newEnv; EnvTrimmer( TypeSubstitution * env, TypeSubstitution * newEnv ) : env( env ), newEnv( newEnv ){} void previsit( TypeDecl * tyDecl ) { // transfer known bindings for seen type variables if ( Type * t = env->lookup( tyDecl->name ) ) { newEnv->add( tyDecl->name, t ); } } }; /// reduce environment to just the parts that are referenced in a given expression TypeSubstitution * trimEnv( ApplicationExpr * expr, TypeSubstitution * env ) { if ( env ) { TypeSubstitution * newEnv = new TypeSubstitution(); PassVisitor trimmer( env, newEnv ); expr->accept( trimmer ); return newEnv; } return nullptr; } /// Generates a thunk that calls `actual` with type `funType` and returns its address Expression * Specialize::createThunkFunction( FunctionType *funType, Expression *actual, InferredParams *inferParams ) { static UniqueName thunkNamer( "_thunk" ); FunctionType *newType = funType->clone(); if ( env ) { // it is important to replace only occurrences of type variables that occur free in the // thunk's type env->applyFree( newType ); } // if // create new thunk with same signature as formal type (C linkage, empty body) FunctionDecl *thunkFunc = new FunctionDecl( thunkNamer.newName(), Type::StorageClasses(), LinkageSpec::C, newType, new CompoundStmt() ); thunkFunc->fixUniqueId(); // thunks may be generated and not used - silence warning with attribute thunkFunc->get_attributes().push_back( new Attribute( "unused" ) ); // thread thunk parameters into call to actual function, naming thunk parameters as we go UniqueName paramNamer( paramPrefix ); ApplicationExpr *appExpr = new ApplicationExpr( actual ); FunctionType * actualType = getFunctionType( actual->get_result() )->clone(); if ( env ) { // need to apply the environment to the actual function's type, since it may itself be polymorphic env->apply( actualType ); } std::unique_ptr< FunctionType > actualTypeManager( actualType ); // for RAII std::list< DeclarationWithType * >::iterator actualBegin = actualType->get_parameters().begin(); std::list< DeclarationWithType * >::iterator actualEnd = actualType->get_parameters().end(); std::list< Expression * > args; for ( DeclarationWithType* param : thunkFunc->get_functionType()->get_parameters() ) { // name each thunk parameter and explode it - these are then threaded back into the actual function call. param->set_name( paramNamer.newName() ); explodeSimple( new VariableExpr( param ), back_inserter( args ) ); } // walk parameters to the actual function alongside the exploded thunk parameters and restructure the arguments to match the actual parameters. std::list< Expression * >::iterator argBegin = args.begin(), argEnd = args.end(); for ( ; actualBegin != actualEnd; ++actualBegin ) { structureArg( (*actualBegin)->get_type(), argBegin, argEnd, back_inserter( appExpr->get_args() ) ); } appExpr->set_env( trimEnv( appExpr, env ) ); if ( inferParams ) { appExpr->get_inferParams() = *inferParams; } // if // handle any specializations that may still be present std::string oldParamPrefix = paramPrefix; paramPrefix += "p"; // save stmtsToAddBefore in oldStmts std::list< Statement* > oldStmts; oldStmts.splice( oldStmts.end(), stmtsToAddBefore ); appExpr->acceptMutator( *visitor ); paramPrefix = oldParamPrefix; // write any statements added for recursive specializations into the thunk body thunkFunc->statements->kids.splice( thunkFunc->statements->kids.end(), stmtsToAddBefore ); // restore oldStmts into stmtsToAddBefore stmtsToAddBefore.splice( stmtsToAddBefore.end(), oldStmts ); // add return (or valueless expression) to the thunk Statement *appStmt; if ( funType->returnVals.empty() ) { appStmt = new ExprStmt( appExpr ); } else { appStmt = new ReturnStmt( appExpr ); } // if thunkFunc->statements->kids.push_back( appStmt ); // add thunk definition to queue of statements to add stmtsToAddBefore.push_back( new DeclStmt( thunkFunc ) ); // return address of thunk function as replacement expression return new AddressExpr( new VariableExpr( thunkFunc ) ); } void Specialize::handleExplicitParams( ApplicationExpr *appExpr ) { // create thunks for the explicit parameters assert( appExpr->function->result ); FunctionType *function = getFunctionType( appExpr->function->result ); assert( function ); std::list< DeclarationWithType* >::iterator formal; std::list< Expression* >::iterator actual; for ( formal = function->get_parameters().begin(), actual = appExpr->get_args().begin(); formal != function->get_parameters().end() && actual != appExpr->get_args().end(); ++formal, ++actual ) { *actual = doSpecialization( (*formal)->get_type(), *actual, &appExpr->get_inferParams() ); } } Expression * Specialize::postmutate( ApplicationExpr *appExpr ) { if ( ! InitTweak::isIntrinsicCallExpr( appExpr ) ) { // create thunks for the inferred parameters // don't need to do this for intrinsic calls, because they aren't actually passed // need to handle explicit params before inferred params so that explicit params do not recieve a changed set of inferParams (and change them again) // alternatively, if order starts to matter then copy appExpr's inferParams and pass them to handleExplicitParams. handleExplicitParams( appExpr ); for ( InferredParams::iterator inferParam = appExpr->get_inferParams().begin(); inferParam != appExpr->get_inferParams().end(); ++inferParam ) { inferParam->second.expr = doSpecialization( inferParam->second.formalType, inferParam->second.expr, inferParam->second.inferParams.get() ); } } return appExpr; } Expression * Specialize::postmutate( CastExpr *castExpr ) { if ( castExpr->result->isVoid() ) { // can't specialize if we don't have a return value return castExpr; } Expression *specialized = doSpecialization( castExpr->result, castExpr->arg, &castExpr->inferParams ); if ( specialized != castExpr->arg ) { // assume here that the specialization incorporates the cast return specialized; } else { return castExpr; } } void convertSpecializations( std::list< Declaration* >& translationUnit ) { PassVisitor spec; mutateAll( translationUnit, spec ); } } // namespace GenPoly // Local Variables: // // tab-width: 4 // // mode: c++ // // compile-command: "make install" // // End: //