// // Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo // // The contents of this file are covered under the licence agreement in the // file "LICENCE" distributed with Cforall. // // Lvalue.cc -- // // Author : Richard C. Bilson // Created On : Mon May 18 07:44:20 2015 // Last Modified By : Peter A. Buhr // Last Modified On : Fri Mar 17 09:11:18 2017 // Update Count : 5 // #include // for strict_dynamic_cast #include // for string #include "Common/PassVisitor.h" #include "GenPoly.h" // for isPolyType #include "Lvalue.h" #include "Parser/LinkageSpec.h" // for Spec, isBuiltin, Intrinsic #include "ResolvExpr/TypeEnvironment.h" // for AssertionSet, OpenVarSet #include "ResolvExpr/Unify.h" // for unify #include "ResolvExpr/typeops.h" #include "SymTab/Autogen.h" #include "SymTab/Indexer.h" // for Indexer #include "SynTree/Declaration.h" // for Declaration, FunctionDecl #include "SynTree/Expression.h" // for Expression, ConditionalExpr #include "SynTree/Mutator.h" // for mutateAll, Mutator #include "SynTree/Statement.h" // for ReturnStmt, Statement (ptr o... #include "SynTree/Type.h" // for PointerType, Type, FunctionType #include "SynTree/Visitor.h" // for Visitor, acceptAll #if 0 #define PRINT(x) x #else #define PRINT(x) #endif namespace GenPoly { namespace { // TODO: fold this into the general createDeref function?? Expression * mkDeref( Expression * arg ) { if ( SymTab::dereferenceOperator ) { // note: reference depth can be arbitrarily deep here, so peel off the outermost pointer/reference, not just pointer because they are effecitvely equivalent in this pass VariableExpr * deref = new VariableExpr( SymTab::dereferenceOperator ); deref->result = new PointerType( Type::Qualifiers(), deref->result ); Type * base = InitTweak::getPointerBase( arg->result ); assertf( base, "expected pointer type in dereference (type was %s)", toString( arg->result ).c_str() ); ApplicationExpr * ret = new ApplicationExpr( deref, { arg } ); delete ret->result; ret->result = base->clone(); ret->result->set_lvalue( true ); return ret; } else { return UntypedExpr::createDeref( arg ); } } struct ReferenceConversions final : public WithStmtsToAdd { Expression * postmutate( CastExpr * castExpr ); Expression * postmutate( AddressExpr * addrExpr ); }; /// Intrinsic functions that take reference parameters don't REALLY take reference parameters -- their reference arguments must always be implicitly dereferenced. struct FixIntrinsicArgs final { Expression * postmutate( ApplicationExpr * appExpr ); }; struct FixIntrinsicResult final : public WithGuards { Expression * postmutate( ApplicationExpr * appExpr ); void premutate( FunctionDecl * funcDecl ); bool inIntrinsic = false; }; /// Replace reference types with pointer types struct ReferenceTypeElimination final { Type * postmutate( ReferenceType * refType ); }; /// GCC-like Generalized Lvalues (which have since been removed from GCC) /// https://gcc.gnu.org/onlinedocs/gcc-3.4.6/gcc/Lvalues.html#Lvalues /// Replaces &(a,b) with (a, &b), &(a ? b : c) with (a ? &b : &c) struct GeneralizedLvalue final : public WithVisitorRef { Expression * postmutate( AddressExpr * addressExpr ); Expression * postmutate( MemberExpr * memExpr ); template Expression * applyTransformation( Expression * expr, Expression * arg, Func mkExpr ); }; /// Removes redundant &*/*& pattern that this pass can generate struct CollapseAddrDeref final { Expression * postmutate( AddressExpr * addressExpr ); Expression * postmutate( ApplicationExpr * appExpr ); }; struct AddrRef final : public WithGuards, public WithVisitorRef, public WithShortCircuiting { void premutate( AddressExpr * addrExpr ); Expression * postmutate( AddressExpr * addrExpr ); void premutate( Expression * expr ); void premutate( ApplicationExpr * appExpr ); void premutate( SingleInit * init ); void handleNonAddr( Expression * ); bool first = true; bool current = false; int refDepth = 0; bool addCast = false; }; } // namespace static bool referencesEliminated = false; // used by UntypedExpr::createDeref to determine whether result type of dereference should be ReferenceType or value type. bool referencesPermissable() { return ! referencesEliminated; } void convertLvalue( std::list< Declaration* > & translationUnit ) { PassVisitor refCvt; PassVisitor elim; PassVisitor genLval; PassVisitor fixer; PassVisitor collapser; PassVisitor addrRef; PassVisitor intrinsicResults; mutateAll( translationUnit, intrinsicResults ); mutateAll( translationUnit, addrRef ); mutateAll( translationUnit, refCvt ); mutateAll( translationUnit, fixer ); mutateAll( translationUnit, collapser ); mutateAll( translationUnit, genLval ); mutateAll( translationUnit, elim ); // last because other passes need reference types to work // from this point forward, no other pass should create reference types. referencesEliminated = true; } Expression * generalizedLvalue( Expression * expr ) { PassVisitor genLval; return expr->acceptMutator( genLval ); } namespace { // true for intrinsic function calls that return a reference bool isIntrinsicReference( Expression * expr ) { if ( UntypedExpr * untyped = dynamic_cast< UntypedExpr * >( expr ) ) { std::string fname = InitTweak::getFunctionName( untyped ); // known intrinsic-reference prelude functions return fname == "*?" || fname == "?[?]"; } else if ( ApplicationExpr * appExpr = dynamic_cast< ApplicationExpr * > ( expr ) ) { if ( DeclarationWithType * func = InitTweak::getFunction( appExpr ) ) { // use type of return variable rather than expr result type, since it may have been changed to a pointer type FunctionType * ftype = GenPoly::getFunctionType( func->get_type() ); Type * ret = ftype->returnVals.empty() ? nullptr : ftype->returnVals.front()->get_type(); return func->linkage == LinkageSpec::Intrinsic && dynamic_cast( ret ); } } return false; } Expression * FixIntrinsicResult::postmutate( ApplicationExpr * appExpr ) { if ( isIntrinsicReference( appExpr ) ) { // eliminate reference types from intrinsic applications - now they return lvalues Type * result = appExpr->result; appExpr->result = result->stripReferences()->clone(); appExpr->result->set_lvalue( true ); if ( ! inIntrinsic ) { // when not in an intrinsic function, add a cast to // don't add cast when in an intrinsic function, since they already have the cast Expression * ret = new CastExpr( appExpr, result ); std::swap( ret->env, appExpr->env ); return ret; } delete result; } return appExpr; } void FixIntrinsicResult::premutate( FunctionDecl * funcDecl ) { GuardValue( inIntrinsic ); inIntrinsic = funcDecl->linkage == LinkageSpec::Intrinsic; } Expression * FixIntrinsicArgs::postmutate( ApplicationExpr * appExpr ) { // intrinsic functions don't really take reference-typed parameters, so they require an implicit dereference on their arguments. if ( DeclarationWithType * function = InitTweak::getFunction( appExpr ) ) { FunctionType * ftype = GenPoly::getFunctionType( function->get_type() ); assertf( ftype, "Function declaration does not have function type." ); // can be of differing lengths only when function is variadic assertf( ftype->parameters.size() == appExpr->args.size() || ftype->isVarArgs, "ApplicationExpr args do not match formal parameter type." ); unsigned int i = 0; const unsigned int end = ftype->parameters.size(); for ( auto p : unsafe_group_iterate( appExpr->args, ftype->parameters ) ) { if (i == end) break; Expression *& arg = std::get<0>( p ); Type * formal = std::get<1>( p )->get_type(); PRINT( std::cerr << "pair<0>: " << arg << std::endl; std::cerr << " -- " << arg->result << std::endl; std::cerr << "pair<1>: " << formal << std::endl; ) if ( dynamic_cast( formal ) ) { PRINT( std::cerr << "===formal is reference" << std::endl; ) // TODO: it's likely that the second condition should be ... && ! isIntrinsicReference( arg ), but this requires investigation. if ( function->get_linkage() != LinkageSpec::Intrinsic && isIntrinsicReference( arg ) ) { // needed for definition of prelude functions, etc. // if argument is dereference or array subscript, the result isn't REALLY a reference, but non-intrinsic functions expect a reference: take address // NOTE: previously, this condition fixed // void f(int *&); // int & x = ...; // f(&x); // But now this is taken care of by a reference cast added by AddrRef. Need to find a new // example or remove this branch. PRINT( std::cerr << "===is intrinsic arg in non-intrinsic call - adding address" << std::endl; ) arg = new AddressExpr( arg ); // } else if ( function->get_linkage() == LinkageSpec::Intrinsic && InitTweak::getPointerBase( arg->result ) ) { } else if ( function->get_linkage() == LinkageSpec::Intrinsic && arg->result->referenceDepth() != 0 ) { // argument is a 'real' reference, but function expects a C lvalue: add a dereference to the reference-typed argument PRINT( std::cerr << "===is non-intrinsic arg in intrinsic call - adding deref to arg" << std::endl; ) Type * baseType = InitTweak::getPointerBase( arg->result ); assertf( baseType, "parameter is reference, arg must be pointer or reference: %s", toString( arg->result ).c_str() ); PointerType * ptrType = new PointerType( Type::Qualifiers(), baseType->clone() ); delete arg->result; arg->result = ptrType; arg = mkDeref( arg ); // assertf( arg->result->referenceDepth() == 0, "Reference types should have been eliminated from intrinsic function calls, but weren't: %s", toCString( arg->result ) ); } } ++i; } } return appExpr; } // idea: &&&E: get outer &, inner & // at inner &, record depth D of reference type of argument of & // at outer &, add D derefs. void AddrRef::handleNonAddr( Expression * ) { // non-address-of: reset status variables: // * current expr is NOT the first address-of expr in an address-of chain // * next seen address-of expr IS the first in the chain. GuardValue( current ); GuardValue( first ); current = false; first = true; } void AddrRef::premutate( Expression * expr ) { handleNonAddr( expr ); GuardValue( addCast ); addCast = false; } void AddrRef::premutate( AddressExpr * ) { GuardValue( current ); GuardValue( first ); current = first; // is this the first address-of in the chain? first = false; // from here out, no longer possible for next address-of to be first in chain if ( current ) { // this is the outermost address-of in a chain GuardValue( refDepth ); refDepth = 0; // set depth to 0 so that postmutate can find the innermost address-of easily } } Expression * AddrRef::postmutate( AddressExpr * addrExpr ) { PRINT( std::cerr << "addr ref at " << addrExpr << std::endl; ) if ( refDepth == 0 ) { PRINT( std::cerr << "depth 0, get new depth..." << std::endl; ) // this is the innermost address-of in a chain, record depth D if ( ! isIntrinsicReference( addrExpr->arg ) ) { // try to avoid ?[?] // xxx - is this condition still necessary? intrinsicReferences should have a cast around them at this point, so I don't think this condition ever fires. refDepth = addrExpr->arg->result->referenceDepth(); PRINT( std::cerr << "arg not intrinsic reference, new depth is: " << refDepth << std::endl; ) } else { assertf( false, "AddrRef : address-of should not have intrinsic reference argument: %s", toCString( addrExpr->arg ) ); } } if ( current ) { // this is the outermost address-of in a chain PRINT( std::cerr << "current, depth is: " << refDepth << std::endl; ) Expression * ret = addrExpr; while ( refDepth ) { // add one dereference for each ret = mkDeref( ret ); refDepth--; } // if addrExpr depth is 0, then the result is a pointer because the arg was depth 1 and not lvalue. // This means the dereference result is not a reference, is lvalue, and one less pointer depth than // the addrExpr. Thus the cast is meaningless. // TODO: One thing to double check is whether it is possible for the types to differ outside of the single // pointer level (i.e. can the base type of addrExpr differ from the type of addrExpr-arg?). // If so then the cast might need to be added, conditional on a more sophisticated check. if ( addCast && addrExpr->result->referenceDepth() != 0 ) { PRINT( std::cerr << "adding cast to " << addrExpr->result << std::endl; ) return new CastExpr( ret, addrExpr->result->clone() ); } return ret; } PRINT( std::cerr << "not current..." << std::endl; ) return addrExpr; } void AddrRef::premutate( ApplicationExpr * appExpr ) { visit_children = false; GuardValue( addCast ); handleNonAddr( appExpr ); for ( Expression *& arg : appExpr->args ) { // each argument with address-of requires a cast addCast = true; arg = arg->acceptMutator( *visitor ); } } void AddrRef::premutate( SingleInit * ) { GuardValue( addCast ); // each initialization context with address-of requires a cast addCast = true; } Expression * ReferenceConversions::postmutate( AddressExpr * addrExpr ) { // Inner expression may have been lvalue to reference conversion, which becomes an address expression. // In this case, remove the outer address expression and return the argument. // TODO: It's possible that this might catch too much and require a more sophisticated check. return addrExpr; } Expression * ReferenceConversions::postmutate( CastExpr * castExpr ) { // xxx - is it possible to convert directly between reference types with a different base? E.g., // int x; // (double&)x; // At the moment, I am working off of the assumption that this is illegal, thus the cast becomes redundant // after this pass, so trash the cast altogether. If that changes, care must be taken to insert the correct // pointer casts in the right places. // Note: reference depth difference is the determining factor in what code is run, rather than whether something is // reference type or not, since conversion still needs to occur when both types are references that differ in depth. Type * destType = castExpr->result; Type * srcType = castExpr->arg->result; int depth1 = destType->referenceDepth(); int depth2 = srcType->referenceDepth(); int diff = depth1 - depth2; if ( diff > 0 && ! srcType->get_lvalue() ) { // rvalue to reference conversion -- introduce temporary // know that reference depth of cast argument is 0, need to introduce n temporaries for reference depth of n, e.g. // (int &&&)3; // becomes // int __ref_tmp_0 = 3; // int & __ref_tmp_1 = _&_ref_tmp_0; // int && __ref_tmp_2 = &__ref_tmp_1; // &__ref_tmp_2; // the last & comes from the remaining reference conversion code SemanticWarning( castExpr->arg->location, Warning::RvalueToReferenceConversion, toCString( castExpr->arg ) ); static UniqueName tempNamer( "__ref_tmp_" ); ObjectDecl * temp = ObjectDecl::newObject( tempNamer.newName(), castExpr->arg->result->clone(), new SingleInit( castExpr->arg ) ); PRINT( std::cerr << "made temp: " << temp << std::endl; ) stmtsToAddBefore.push_back( new DeclStmt( temp ) ); for ( int i = 0; i < depth1-1; i++ ) { // xxx - maybe this should be diff-1? check how this works with reference type for srcType ObjectDecl * newTemp = ObjectDecl::newObject( tempNamer.newName(), new ReferenceType( Type::Qualifiers(), temp->type->clone() ), new SingleInit( new AddressExpr( new VariableExpr( temp ) ) ) ); PRINT( std::cerr << "made temp" << i << ": " << newTemp << std::endl; ) stmtsToAddBefore.push_back( new DeclStmt( newTemp ) ); temp = newTemp; } // update diff so that remaining code works out correctly castExpr->arg = new VariableExpr( temp ); PRINT( std::cerr << "update cast to: " << castExpr << std::endl; ) srcType = castExpr->arg->result; depth2 = srcType->referenceDepth(); diff = depth1 - depth2; assert( diff == 1 ); } // handle conversion between different depths PRINT ( if ( depth1 || depth2 ) { std::cerr << "destType: " << destType << " / srcType: " << srcType << std::endl; std::cerr << "depth: " << depth1 << " / " << depth2 << std::endl; } ) if ( diff > 0 ) { // conversion to type with more depth (e.g. int & -> int &&): add address-of for each level of difference Expression * ret = castExpr->arg; for ( int i = 0; i < diff; ++i ) { ret = new AddressExpr( ret ); } if ( srcType->get_lvalue() && srcType->get_qualifiers() != strict_dynamic_cast( destType )->base->get_qualifiers() ) { // must keep cast if cast-to type is different from the actual type castExpr->arg = ret; return castExpr; } ret->env = castExpr->env; delete ret->result; ret->result = castExpr->result; castExpr->env = nullptr; castExpr->arg = nullptr; castExpr->result = nullptr; delete castExpr; return ret; } else if ( diff < 0 ) { // conversion to type with less depth (e.g. int && -> int &): add dereferences for each level of difference diff = -diff; // care only about magnitude now Expression * ret = castExpr->arg; for ( int i = 0; i < diff; ++i ) { ret = mkDeref( ret ); // xxx - try removing one reference here? actually, looks like mkDeref already does this, so more closely look at the types generated. } if ( ! ResolvExpr::typesCompatibleIgnoreQualifiers( destType->stripReferences(), srcType->stripReferences(), SymTab::Indexer() ) ) { // must keep cast if types are different castExpr->arg = ret; return castExpr; } ret->env = castExpr->env; delete ret->result; ret->result = castExpr->result; ret->result->set_lvalue( true ); // ensure result is lvalue castExpr->env = nullptr; castExpr->arg = nullptr; castExpr->result = nullptr; delete castExpr; return ret; } else { assert( diff == 0 ); // conversion between references of the same depth if ( ResolvExpr::typesCompatible( castExpr->result, castExpr->arg->result, SymTab::Indexer() ) && castExpr->isGenerated ) { // Remove useless generated casts PRINT( std::cerr << "types are compatible, removing cast: " << castExpr << std::endl; std::cerr << "-- " << castExpr->result << std::endl; std::cerr << "-- " << castExpr->arg->result << std::endl; ) Expression * ret = castExpr->arg; castExpr->arg = nullptr; std::swap( castExpr->env, ret->env ); delete castExpr; return ret; } return castExpr; } } Type * ReferenceTypeElimination::postmutate( ReferenceType * refType ) { Type * base = refType->base; Type::Qualifiers qualifiers = refType->get_qualifiers(); refType->base = nullptr; delete refType; return new PointerType( qualifiers, base ); } template Expression * GeneralizedLvalue::applyTransformation( Expression * expr, Expression * arg, Func mkExpr ) { if ( CommaExpr * commaExpr = dynamic_cast< CommaExpr * >( arg ) ) { Expression * arg1 = commaExpr->arg1->clone(); Expression * arg2 = commaExpr->arg2->clone(); Expression * ret = new CommaExpr( arg1, mkExpr( arg2 )->acceptMutator( *visitor ) ); ret->env = expr->env; expr->env = nullptr; delete expr; return ret; } else if ( ConditionalExpr * condExpr = dynamic_cast< ConditionalExpr * >( arg ) ) { Expression * arg1 = condExpr->arg1->clone(); Expression * arg2 = condExpr->arg2->clone(); Expression * arg3 = condExpr->arg3->clone(); ConditionalExpr * ret = new ConditionalExpr( arg1, mkExpr( arg2 )->acceptMutator( *visitor ), mkExpr( arg3 )->acceptMutator( *visitor ) ); ret->env = expr->env; expr->env = nullptr; delete expr; // conditional expr type may not be either of the argument types, need to unify using namespace ResolvExpr; Type* commonType = nullptr; TypeEnvironment newEnv; AssertionSet needAssertions, haveAssertions; OpenVarSet openVars; unify( ret->arg2->result, ret->arg3->result, newEnv, needAssertions, haveAssertions, openVars, SymTab::Indexer(), commonType ); ret->result = commonType ? commonType : ret->arg2->result->clone(); return ret; } return expr; } Expression * GeneralizedLvalue::postmutate( MemberExpr * memExpr ) { return applyTransformation( memExpr, memExpr->aggregate, [=]( Expression * aggr ) { return new MemberExpr( memExpr->member, aggr ); } ); } Expression * GeneralizedLvalue::postmutate( AddressExpr * addrExpr ) { return applyTransformation( addrExpr, addrExpr->arg, []( Expression * arg ) { return new AddressExpr( arg ); } ); } Expression * CollapseAddrDeref::postmutate( AddressExpr * addrExpr ) { Expression * arg = addrExpr->arg; if ( isIntrinsicReference( arg ) ) { std::string fname = InitTweak::getFunctionName( arg ); if ( fname == "*?" ) { Expression *& arg0 = InitTweak::getCallArg( arg, 0 ); Expression * ret = arg0; ret->set_env( addrExpr->env ); arg0 = nullptr; addrExpr->env = nullptr; delete addrExpr; return ret; } } else if ( CastExpr * castExpr = dynamic_cast< CastExpr * > ( arg ) ) { // need to move cast to pointer type out a level since address of pointer // is not valid C code (can be introduced in prior passes, e.g., InstantiateGeneric) if ( InitTweak::getPointerBase( castExpr->result ) ) { addrExpr->arg = castExpr->arg; castExpr->arg = addrExpr; castExpr->result = new PointerType( Type::Qualifiers(), castExpr->result ); return castExpr; } } return addrExpr; } Expression * CollapseAddrDeref::postmutate( ApplicationExpr * appExpr ) { if ( isIntrinsicReference( appExpr ) ) { std::string fname = InitTweak::getFunctionName( appExpr ); if ( fname == "*?" ) { Expression * arg = InitTweak::getCallArg( appExpr, 0 ); // xxx - this isn't right, because it can remove casts that should be there... // while ( CastExpr * castExpr = dynamic_cast< CastExpr * >( arg ) ) { // arg = castExpr->get_arg(); // } if ( AddressExpr * addrExpr = dynamic_cast< AddressExpr * >( arg ) ) { Expression * ret = addrExpr->arg; ret->env = appExpr->env; addrExpr->arg = nullptr; appExpr->env = nullptr; delete appExpr; return ret; } } } return appExpr; } } // namespace } // namespace GenPoly // Local Variables: // // tab-width: 4 // // mode: c++ // // compile-command: "make install" // // End: //