// // Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo // // The contents of this file are covered under the licence agreement in the // file "LICENCE" distributed with Cforall. // // InstantiateGeneric.cc -- // // Author : Aaron B. Moss // Created On : Thu Aug 04 18:33:00 2016 // Last Modified By : Aaron B. Moss // Last Modified On : Thu Aug 04 18:33:00 2016 // Update Count : 1 // #include "InstantiateGeneric.h" #include // for assertf, assert #include // for back_inserter, inserter #include // for list, _List_const_iterator #include // for move, pair #include // for vector #include "CodeGen/OperatorTable.h" #include "Common/PassVisitor.h" // for PassVisitor, WithDeclsToAdd #include "Common/ScopedMap.h" // for ScopedMap #include "Common/SemanticError.h" // for SemanticError #include "Common/UniqueName.h" // for UniqueName #include "Common/utility.h" // for deleteAll, cloneAll #include "GenPoly.h" // for isPolyType, typesPolyCompatible #include "InitTweak/InitTweak.h" #include "ResolvExpr/typeops.h" #include "ScopedSet.h" // for ScopedSet, ScopedSet<>::iterator #include "ScrubTyVars.h" // for ScrubTyVars #include "SynTree/Declaration.h" // for StructDecl, UnionDecl, TypeDecl #include "SynTree/Expression.h" // for TypeExpr, Expression #include "SynTree/Mutator.h" // for mutateAll #include "SynTree/Type.h" // for StructInstType, UnionInstType #include "SynTree/TypeSubstitution.h" // for TypeSubstitution #include "SynTree/Visitor.h" // for acceptAll namespace GenPoly { /// Abstracts type equality for a list of parameter types struct TypeList { TypeList() : params() {} TypeList( const std::list< Type* > &_params ) : params() { cloneAll(_params, params); } TypeList( std::list< Type* > &&_params ) : params( _params ) {} TypeList( const TypeList &that ) : params() { cloneAll(that.params, params); } TypeList( TypeList &&that ) : params( std::move( that.params ) ) {} /// Extracts types from a list of TypeExpr* TypeList( const std::list< TypeExpr* >& _params ) : params() { for ( std::list< TypeExpr* >::const_iterator param = _params.begin(); param != _params.end(); ++param ) { params.push_back( (*param)->get_type()->clone() ); } } TypeList& operator= ( const TypeList &that ) { deleteAll( params ); params.clear(); cloneAll( that.params, params ); return *this; } TypeList& operator= ( TypeList &&that ) { deleteAll( params ); params = std::move( that.params ); return *this; } ~TypeList() { deleteAll( params ); } bool operator== ( const TypeList& that ) const { if ( params.size() != that.params.size() ) return false; for ( std::list< Type* >::const_iterator it = params.begin(), jt = that.params.begin(); it != params.end(); ++it, ++jt ) { if ( ! typesPolyCompatible( *it, *jt ) ) return false; } return true; } std::list< Type* > params; ///< Instantiation parameters }; /// Maps a key and a TypeList to the some value, accounting for scope template< typename Key, typename Value > class InstantiationMap { /// Wraps value for a specific (Key, TypeList) combination typedef std::pair< TypeList, Value* > Instantiation; /// List of TypeLists paired with their appropriate values typedef std::vector< Instantiation > ValueList; /// Underlying map type; maps keys to a linear list of corresponding TypeLists and values typedef ScopedMap< Key*, ValueList > InnerMap; InnerMap instantiations; ///< instantiations public: /// Starts a new scope void beginScope() { instantiations.beginScope(); } /// Ends a scope void endScope() { instantiations.endScope(); } /// Gets the value for the (key, typeList) pair, returns NULL on none such. Value *lookup( Key *key, const std::list< TypeExpr* >& params ) const { TypeList typeList( params ); // scan scopes for matches to the key for ( typename InnerMap::const_iterator insts = instantiations.find( key ); insts != instantiations.end(); insts = instantiations.findNext( insts, key ) ) { for ( typename ValueList::const_reverse_iterator inst = insts->second.rbegin(); inst != insts->second.rend(); ++inst ) { if ( inst->first == typeList ) return inst->second; } } // no matching instantiations found return 0; } /// Adds a value for a (key, typeList) pair to the current scope void insert( Key *key, const std::list< TypeExpr* > ¶ms, Value *value ) { auto it = instantiations.findAt( instantiations.currentScope(), key ); if ( it == instantiations.end() ) { instantiations.insert( key, ValueList{ Instantiation{ TypeList( params ), value } } ); } else { it->second.push_back( Instantiation{ TypeList( params ), value } ); } } }; /// Possible options for a given specialization of a generic type enum class genericType { dtypeStatic, ///< Concrete instantiation based solely on {d,f}type-to-void conversions concrete, ///< Concrete instantiation requiring at least one parameter type dynamic ///< No concrete instantiation }; genericType& operator |= ( genericType& gt, const genericType& ht ) { switch ( gt ) { case genericType::dtypeStatic: gt = ht; break; case genericType::concrete: if ( ht == genericType::dynamic ) { gt = genericType::dynamic; } break; case genericType::dynamic: // nothing possible break; } return gt; } /// Add cast to dtype-static member expressions so that type information is not lost in GenericInstantiator struct FixDtypeStatic final : public WithGuards, public WithVisitorRef, public WithShortCircuiting, public WithStmtsToAdd { Expression * postmutate( MemberExpr * memberExpr ); void premutate( ApplicationExpr * appExpr ); void premutate( AddressExpr * addrExpr ); template Expression * fixMemberExpr( AggrInst * inst, MemberExpr * memberExpr ); bool isLvalueArg = false; }; /// Mutator pass that replaces concrete instantiations of generic types with actual struct declarations, scoped appropriately struct GenericInstantiator final : public WithTypeSubstitution, public WithDeclsToAdd, public WithVisitorRef, public WithGuards { /// Map of (generic type, parameter list) pairs to concrete type instantiations InstantiationMap< AggregateDecl, AggregateDecl > instantiations; /// Set of types which are dtype-only generic (and therefore have static layout) ScopedSet< AggregateDecl* > dtypeStatics; /// Namer for concrete types UniqueName typeNamer; /// Should not make use of type environment to replace types of function parameter and return values. bool inFunctionType = false; /// Index of current member, used to recreate MemberExprs with the member from an instantiation int memberIndex = -1; GenericInstantiator() : instantiations(), dtypeStatics(), typeNamer("_conc_") {} Type* postmutate( StructInstType *inst ); Type* postmutate( UnionInstType *inst ); // fix MemberExprs to use the member from the instantiation void premutate( MemberExpr * memberExpr ); Expression * postmutate( MemberExpr * memberExpr ); void premutate( FunctionType * ) { GuardValue( inFunctionType ); inFunctionType = true; } void beginScope(); void endScope(); private: /// Wrap instantiation lookup for structs StructDecl* lookup( StructInstType *inst, const std::list< TypeExpr* > &typeSubs ) { return (StructDecl*)instantiations.lookup( inst->get_baseStruct(), typeSubs ); } /// Wrap instantiation lookup for unions UnionDecl* lookup( UnionInstType *inst, const std::list< TypeExpr* > &typeSubs ) { return (UnionDecl*)instantiations.lookup( inst->get_baseUnion(), typeSubs ); } /// Wrap instantiation insertion for structs void insert( StructInstType *inst, const std::list< TypeExpr* > &typeSubs, StructDecl *decl ) { instantiations.insert( inst->get_baseStruct(), typeSubs, decl ); } /// Wrap instantiation insertion for unions void insert( UnionInstType *inst, const std::list< TypeExpr* > &typeSubs, UnionDecl *decl ) { instantiations.insert( inst->get_baseUnion(), typeSubs, decl ); } void replaceParametersWithConcrete( std::list< Expression* >& params ); Type *replaceWithConcrete( Type *type, bool doClone ); /// Strips a dtype-static aggregate decl of its type parameters, marks it as stripped void stripDtypeParams( AggregateDecl *base, std::list< TypeDecl* >& baseParams, const std::list< TypeExpr* >& typeSubs ); }; void instantiateGeneric( std::list< Declaration* > &translationUnit ) { PassVisitor fixer; PassVisitor instantiator; mutateAll( translationUnit, fixer ); mutateAll( translationUnit, instantiator ); } bool isDtypeStatic( const std::list< TypeDecl* >& baseParams ) { return std::all_of( baseParams.begin(), baseParams.end(), []( TypeDecl * td ) { return ! td->isComplete(); } ); } /// Makes substitutions of params into baseParams; returns dtypeStatic if there is a concrete instantiation based only on {d,f}type-to-void conversions, /// concrete if there is a concrete instantiation requiring at least one parameter type, and dynamic if there is no concrete instantiation genericType makeSubstitutions( const std::list< TypeDecl* >& baseParams, const std::list< Expression* >& params, std::list< TypeExpr* >& out ) { genericType gt = genericType::dtypeStatic; // substitute concrete types for given parameters, and incomplete types for placeholders std::list< TypeDecl* >::const_iterator baseParam = baseParams.begin(); std::list< Expression* >::const_iterator param = params.begin(); for ( ; baseParam != baseParams.end() && param != params.end(); ++baseParam, ++param ) { TypeExpr *paramType = dynamic_cast< TypeExpr* >( *param ); assert(paramType && "Aggregate parameters should be type expressions"); if ( (*baseParam)->isComplete() ) { // substitute parameter for complete (otype or sized dtype) type if ( isPolyType( paramType->get_type() ) ) { // substitute polymorphic parameter type in to generic type out.push_back( paramType->clone() ); gt = genericType::dynamic; } else { // normalize possibly dtype-static parameter type out.push_back( new TypeExpr{ ScrubTyVars::scrubAll( paramType->get_type()->clone() ) } ); gt |= genericType::concrete; } } else switch ( (*baseParam)->get_kind() ) { case TypeDecl::Dtype: // can pretend that any incomplete dtype is `void` out.push_back( new TypeExpr( new VoidType( Type::Qualifiers() ) ) ); break; case TypeDecl::Ftype: // can pretend that any ftype is `void (*)(void)` out.push_back( new TypeExpr( new FunctionType( Type::Qualifiers(), false ) ) ); break; case TypeDecl::Ttype: assertf( false, "Ttype parameters are not currently allowed as parameters to generic types." ); break; default: assertf( false, "Unhandled type parameter kind" ); break; } } assertf( baseParam == baseParams.end() && param == params.end(), "Type parameters should match type variables" ); return gt; } /// Substitutes types of members of in according to baseParams => typeSubs, appending the result to out void substituteMembers( const std::list< Declaration* >& in, const std::list< TypeDecl* >& baseParams, const std::list< TypeExpr* >& typeSubs, std::list< Declaration* >& out ) { // substitute types into new members TypeSubstitution subs( baseParams.begin(), baseParams.end(), typeSubs.begin() ); for ( std::list< Declaration* >::const_iterator member = in.begin(); member != in.end(); ++member ) { Declaration *newMember = (*member)->clone(); subs.apply(newMember); out.push_back( newMember ); } } /// Substitutes types of members according to baseParams => typeSubs, working in-place void substituteMembers( std::list< Declaration* >& members, const std::list< TypeDecl* >& baseParams, const std::list< TypeExpr* >& typeSubs ) { // substitute types into new members TypeSubstitution subs( baseParams.begin(), baseParams.end(), typeSubs.begin() ); for ( std::list< Declaration* >::iterator member = members.begin(); member != members.end(); ++member ) { subs.apply(*member); } } /// Strips the instances's type parameters void stripInstParams( ReferenceToType *inst ) { deleteAll( inst->get_parameters() ); inst->get_parameters().clear(); } void GenericInstantiator::stripDtypeParams( AggregateDecl *base, std::list< TypeDecl* >& baseParams, const std::list< TypeExpr* >& typeSubs ) { substituteMembers( base->get_members(), baseParams, typeSubs ); // xxx - can't delete type parameters because they may have assertions that are used // deleteAll( baseParams ); baseParams.clear(); dtypeStatics.insert( base ); } /// xxx - more or less copied from box -- these should be merged with those somehow... void GenericInstantiator::replaceParametersWithConcrete( std::list< Expression* >& params ) { for ( std::list< Expression* >::iterator param = params.begin(); param != params.end(); ++param ) { TypeExpr *paramType = dynamic_cast< TypeExpr* >( *param ); assertf(paramType, "Aggregate parameters should be type expressions"); paramType->set_type( replaceWithConcrete( paramType->get_type(), false ) ); } } Type *GenericInstantiator::replaceWithConcrete( Type *type, bool doClone ) { if ( TypeInstType *typeInst = dynamic_cast< TypeInstType * >( type ) ) { if ( env && ! inFunctionType ) { Type *concrete = env->lookup( typeInst->get_name() ); if ( concrete ) { return concrete->clone(); } else return typeInst->clone(); } } else if ( StructInstType *structType = dynamic_cast< StructInstType* >( type ) ) { if ( doClone ) { structType = structType->clone(); } replaceParametersWithConcrete( structType->get_parameters() ); return structType; } else if ( UnionInstType *unionType = dynamic_cast< UnionInstType* >( type ) ) { if ( doClone ) { unionType = unionType->clone(); } replaceParametersWithConcrete( unionType->get_parameters() ); return unionType; } return type; } Type* GenericInstantiator::postmutate( StructInstType *inst ) { // exit early if no need for further mutation if ( inst->get_parameters().empty() ) return inst; // need to replace type variables to ensure that generic types are instantiated for the return values of polymorphic functions (in particular, for thunks, because they are not [currently] copy constructed). replaceWithConcrete( inst, false ); // check for an already-instantiatiated dtype-static type if ( dtypeStatics.find( inst->get_baseStruct() ) != dtypeStatics.end() ) { stripInstParams( inst ); return inst; } // check if type can be concretely instantiated; put substitutions into typeSubs assertf( inst->get_baseParameters(), "Base struct has parameters" ); std::list< TypeExpr* > typeSubs; genericType gt = makeSubstitutions( *inst->get_baseParameters(), inst->get_parameters(), typeSubs ); switch ( gt ) { case genericType::dtypeStatic: stripDtypeParams( inst->get_baseStruct(), *inst->get_baseParameters(), typeSubs ); stripInstParams( inst ); break; case genericType::concrete: { // make concrete instantiation of generic type StructDecl *concDecl = lookup( inst, typeSubs ); if ( ! concDecl ) { // set concDecl to new type, insert type declaration into statements to add concDecl = new StructDecl( typeNamer.newName( inst->get_name() ) ); concDecl->set_body( inst->get_baseStruct()->has_body() ); substituteMembers( inst->get_baseStruct()->get_members(), *inst->get_baseParameters(), typeSubs, concDecl->get_members() ); insert( inst, typeSubs, concDecl ); // must insert before recursion concDecl->acceptMutator( *visitor ); // recursively instantiate members declsToAddBefore.push_back( concDecl ); // must occur before declaration is added so that member instantiations appear first } StructInstType *newInst = new StructInstType( inst->get_qualifiers(), concDecl->get_name() ); newInst->set_baseStruct( concDecl ); delete inst; inst = newInst; break; } case genericType::dynamic: // do nothing break; } deleteAll( typeSubs ); return inst; } Type* GenericInstantiator::postmutate( UnionInstType *inst ) { // exit early if no need for further mutation if ( inst->get_parameters().empty() ) return inst; // check for an already-instantiatiated dtype-static type if ( dtypeStatics.find( inst->get_baseUnion() ) != dtypeStatics.end() ) { stripInstParams( inst ); return inst; } // check if type can be concretely instantiated; put substitutions into typeSubs assert( inst->get_baseParameters() && "Base union has parameters" ); std::list< TypeExpr* > typeSubs; genericType gt = makeSubstitutions( *inst->get_baseParameters(), inst->get_parameters(), typeSubs ); switch ( gt ) { case genericType::dtypeStatic: stripDtypeParams( inst->get_baseUnion(), *inst->get_baseParameters(), typeSubs ); stripInstParams( inst ); break; case genericType::concrete: { // make concrete instantiation of generic type UnionDecl *concDecl = lookup( inst, typeSubs ); if ( ! concDecl ) { // set concDecl to new type, insert type declaration into statements to add concDecl = new UnionDecl( typeNamer.newName( inst->get_name() ) ); concDecl->set_body( inst->get_baseUnion()->has_body() ); substituteMembers( inst->get_baseUnion()->get_members(), *inst->get_baseParameters(), typeSubs, concDecl->get_members() ); insert( inst, typeSubs, concDecl ); // must insert before recursion concDecl->acceptMutator( *visitor ); // recursively instantiate members declsToAddBefore.push_back( concDecl ); // must occur before declaration is added so that member instantiations appear first } UnionInstType *newInst = new UnionInstType( inst->get_qualifiers(), concDecl->get_name() ); newInst->set_baseUnion( concDecl ); delete inst; inst = newInst; break; } case genericType::dynamic: // do nothing break; } deleteAll( typeSubs ); return inst; } namespace { bool isGenericType( Type * t ) { if ( StructInstType * inst = dynamic_cast< StructInstType * >( t ) ) { return ! inst->parameters.empty(); } else if ( UnionInstType * inst = dynamic_cast< UnionInstType * >( t ) ) { return ! inst->parameters.empty(); } return false; } AggregateDecl * getAggr( Type * t ) { if ( StructInstType * inst = dynamic_cast< StructInstType * >( t ) ) { return inst->baseStruct; } else if ( UnionInstType * inst = dynamic_cast< UnionInstType * >( t ) ) { return inst->baseUnion; } assertf( false, "Non-aggregate type: %s", toString( t ).c_str() ); } } void GenericInstantiator::premutate( MemberExpr * memberExpr ) { GuardValue( memberIndex ); memberIndex = -1; if ( isGenericType( memberExpr->aggregate->result ) ) { // find the location of the member AggregateDecl * aggr = getAggr( memberExpr->aggregate->result ); std::list< Declaration * > & members = aggr->members; memberIndex = std::distance( members.begin(), std::find( members.begin(), members.end(), memberExpr->member ) ); assertf( memberIndex < (int)members.size(), "Could not find member %s in generic type %s", toString( memberExpr->member ).c_str(), toString( memberExpr->aggregate ).c_str() ); } } Expression * GenericInstantiator::postmutate( MemberExpr * memberExpr ) { if ( memberIndex != -1 ) { // using the location from the generic type, find the member in the instantiation and rebuild the member expression AggregateDecl * aggr = getAggr( memberExpr->aggregate->result ); assertf( memberIndex < (int)aggr->members.size(), "Instantiation somehow has fewer members than the generic type." ); Declaration * member = *std::next( aggr->members.begin(), memberIndex ); assertf( member->name == memberExpr->member->name, "Instantiation has different member order than the generic type. %s / %s", toString( member ).c_str(), toString( memberExpr->member ).c_str() ); DeclarationWithType * field = strict_dynamic_cast< DeclarationWithType * >( member ); MemberExpr * ret = new MemberExpr( field, memberExpr->aggregate->clone() ); std::swap( ret->env, memberExpr->env ); delete memberExpr; return ret; } return memberExpr; } void GenericInstantiator::beginScope() { instantiations.beginScope(); dtypeStatics.beginScope(); } void GenericInstantiator::endScope() { instantiations.endScope(); dtypeStatics.endScope(); } template< typename AggrInst > Expression * FixDtypeStatic::fixMemberExpr( AggrInst * inst, MemberExpr * memberExpr ) { // need to cast dtype-static member expressions to their actual type before that type is erased. auto & baseParams = *inst->get_baseParameters(); if ( isDtypeStatic( baseParams ) ) { if ( ! ResolvExpr::typesCompatible( memberExpr->result, memberExpr->member->get_type(), SymTab::Indexer() ) ) { // type of member and type of expression differ Type * concType = memberExpr->result->clone(); if ( isLvalueArg ) { // result must be C lvalue, so make a new reference variable with the correct actual type to replace the member expression // forall(dtype T) // struct Ptr { // T * x // }; // Ptr(int) p; // int i; // p.x = &i; // becomes // int *& _dtype_static_member_0 = (int **)&p.x; // _dtype_static_member_0 = &i; // Note: this currently creates more temporaries than is strictly necessary, since it does not check for duplicate uses of the same member expression. static UniqueName tmpNamer( "_dtype_static_member_" ); Expression * init = new CastExpr( new AddressExpr( memberExpr ), new PointerType( Type::Qualifiers(), concType->clone() ) ); ObjectDecl * tmp = ObjectDecl::newObject( tmpNamer.newName(), new ReferenceType( Type::Qualifiers(), concType ), new SingleInit( init ) ); stmtsToAddBefore.push_back( new DeclStmt( noLabels, tmp ) ); return new VariableExpr( tmp ); } else { // can simply add a cast to actual type return new CastExpr( memberExpr, concType ); } } } return memberExpr; } Expression * FixDtypeStatic::postmutate( MemberExpr * memberExpr ) { Type * aggrType = memberExpr->aggregate->result; if ( isGenericType( aggrType ) ) { if ( StructInstType * inst = dynamic_cast< StructInstType * >( aggrType ) ) { return fixMemberExpr( inst, memberExpr ); } else if ( UnionInstType * inst = dynamic_cast< UnionInstType * >( aggrType ) ) { return fixMemberExpr( inst, memberExpr ); } } return memberExpr; } void FixDtypeStatic::premutate( ApplicationExpr * appExpr ) { GuardValue( isLvalueArg ); isLvalueArg = false; DeclarationWithType * function = InitTweak::getFunction( appExpr ); if ( function->linkage == LinkageSpec::Intrinsic && CodeGen::isAssignment( function->name ) ) { // explicitly visit children because only the first argument must be a C lvalue. visit_children = false; appExpr->env = maybeMutate( appExpr->env, *visitor ); appExpr->result = maybeMutate( appExpr->result, *visitor ); appExpr->function = maybeMutate( appExpr->function, *visitor ); isLvalueArg = true; for ( Expression * arg : appExpr->args ) { arg = maybeMutate( arg, *visitor ); isLvalueArg = false; } } } void FixDtypeStatic::premutate( AddressExpr * ) { // argument of & must be C lvalue GuardValue( isLvalueArg ); isLvalueArg = true; } } // namespace GenPoly // Local Variables: // // tab-width: 4 // // mode: c++ // // compile-command: "make install" // // End: //