// // Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo // // The contents of this file are covered under the licence agreement in the // file "LICENCE" distributed with Cforall. // // GenPoly.cc -- // // Author : Richard C. Bilson // Created On : Mon May 18 07:44:20 2015 // Last Modified By : Andrew Beach // Last Modified On : Mon Oct 24 15:19:00 2022 // Update Count : 17 // #include "GenPoly.h" #include // for assertf, assert #include // for operator<<, ostream, basic_os... #include // for back_insert_iterator, back_in... #include // for list, _List_iterator, list<>:... #include // for type_index #include // for pair #include // for vector #include "AST/Type.hpp" #include "GenPoly/ErasableScopedMap.h" // for ErasableScopedMap<>::const_it... #include "ResolvExpr/typeops.h" // for flatten #include "SynTree/Constant.h" // for Constant #include "SynTree/Expression.h" // for Expression, TypeExpr, Constan... #include "SynTree/Type.h" // for Type, StructInstType, UnionIn... #include "SynTree/TypeSubstitution.h" // for TypeSubstitution using namespace std; namespace GenPoly { namespace { /// Checks a parameter list for polymorphic parameters; will substitute according to env if present bool hasPolyParams( std::list< Expression* >& params, const TypeSubstitution *env ) { for ( std::list< Expression* >::iterator param = params.begin(); param != params.end(); ++param ) { TypeExpr *paramType = dynamic_cast< TypeExpr* >( *param ); assertf(paramType, "Aggregate parameters should be type expressions"); if ( isPolyType( paramType->get_type(), env ) ) return true; } return false; } bool hasPolyParams( const std::vector> & params, const ast::TypeSubstitution * env) { for (auto ¶m : params) { auto paramType = param.strict_as(); if (isPolyType(paramType->type, env)) return true; } return false; } /// Checks a parameter list for polymorphic parameters from tyVars; will substitute according to env if present bool hasPolyParams( std::list< Expression* >& params, const TyVarMap &tyVars, const TypeSubstitution *env ) { for ( std::list< Expression* >::iterator param = params.begin(); param != params.end(); ++param ) { TypeExpr *paramType = dynamic_cast< TypeExpr* >( *param ); assertf(paramType, "Aggregate parameters should be type expressions"); if ( isPolyType( paramType->get_type(), tyVars, env ) ) return true; } return false; } /// Checks a parameter list for dynamic-layout parameters from tyVars; will substitute according to env if present bool hasDynParams( std::list< Expression* >& params, const TyVarMap &tyVars, const TypeSubstitution *env ) { for ( std::list< Expression* >::iterator param = params.begin(); param != params.end(); ++param ) { TypeExpr *paramType = dynamic_cast< TypeExpr* >( *param ); assertf(paramType, "Aggregate parameters should be type expressions"); if ( isDynType( paramType->get_type(), tyVars, env ) ) return true; } return false; } bool hasDynParams( const std::vector> & params, const TypeVarMap & typeVars, const ast::TypeSubstitution * subst ) { for ( ast::ptr const & paramExpr : params ) { auto param = paramExpr.as(); assertf( param, "Aggregate parameters should be type expressions." ); if ( isDynType( param->type.get(), typeVars, subst ) ) { return true; } } return false; } /// Checks a parameter list for inclusion of polymorphic parameters; will substitute according to env if present bool includesPolyParams( std::list< Expression* >& params, const TypeSubstitution *env ) { for ( std::list< Expression* >::iterator param = params.begin(); param != params.end(); ++param ) { TypeExpr *paramType = dynamic_cast< TypeExpr* >( *param ); assertf(paramType, "Aggregate parameters should be type expressions"); if ( includesPolyType( paramType->get_type(), env ) ) return true; } return false; } /// Checks a parameter list for inclusion of polymorphic parameters from tyVars; will substitute according to env if present bool includesPolyParams( std::list< Expression* >& params, const TyVarMap &tyVars, const TypeSubstitution *env ) { for ( std::list< Expression* >::iterator param = params.begin(); param != params.end(); ++param ) { TypeExpr *paramType = dynamic_cast< TypeExpr* >( *param ); assertf(paramType, "Aggregate parameters should be type expressions"); if ( includesPolyType( paramType->get_type(), tyVars, env ) ) return true; } return false; } } Type* replaceTypeInst( Type* type, const TypeSubstitution* env ) { if ( ! env ) return type; if ( TypeInstType *typeInst = dynamic_cast< TypeInstType* >( type ) ) { Type *newType = env->lookup( typeInst->get_name() ); if ( newType ) return newType; } return type; } const Type* replaceTypeInst( const Type* type, const TypeSubstitution* env ) { if ( ! env ) return type; if ( auto typeInst = dynamic_cast< const TypeInstType* >( type ) ) { Type *newType = env->lookup( typeInst->get_name() ); if ( newType ) return newType; } return type; } const ast::Type * replaceTypeInst(const ast::Type * type, const ast::TypeSubstitution * env) { if (!env) return type; if ( auto typeInst = dynamic_cast(type) ) { auto newType = env->lookup(typeInst); if (newType) return newType; } return type; } Type *isPolyType( Type *type, const TypeSubstitution *env ) { type = replaceTypeInst( type, env ); if ( dynamic_cast< TypeInstType * >( type ) ) { return type; } else if ( ArrayType * arrayType = dynamic_cast< ArrayType * >( type ) ) { return isPolyType( arrayType->base, env ); } else if ( StructInstType *structType = dynamic_cast< StructInstType* >( type ) ) { if ( hasPolyParams( structType->get_parameters(), env ) ) return type; } else if ( UnionInstType *unionType = dynamic_cast< UnionInstType* >( type ) ) { if ( hasPolyParams( unionType->get_parameters(), env ) ) return type; } return 0; } const ast::Type * isPolyType(const ast::Type * type, const ast::TypeSubstitution * env) { type = replaceTypeInst( type, env ); if ( dynamic_cast< const ast::TypeInstType * >( type ) ) { return type; } else if ( auto arrayType = dynamic_cast< const ast::ArrayType * >( type ) ) { return isPolyType( arrayType->base, env ); } else if ( auto structType = dynamic_cast< const ast::StructInstType* >( type ) ) { if ( hasPolyParams( structType->params, env ) ) return type; } else if ( auto unionType = dynamic_cast< const ast::UnionInstType* >( type ) ) { if ( hasPolyParams( unionType->params, env ) ) return type; } return 0; } Type *isPolyType( Type *type, const TyVarMap &tyVars, const TypeSubstitution *env ) { type = replaceTypeInst( type, env ); if ( TypeInstType *typeInst = dynamic_cast< TypeInstType * >( type ) ) { if ( tyVars.find( typeInst->get_name() ) != tyVars.end() ) { return type; } } else if ( ArrayType * arrayType = dynamic_cast< ArrayType * >( type ) ) { return isPolyType( arrayType->base, tyVars, env ); } else if ( StructInstType *structType = dynamic_cast< StructInstType* >( type ) ) { if ( hasPolyParams( structType->get_parameters(), tyVars, env ) ) return type; } else if ( UnionInstType *unionType = dynamic_cast< UnionInstType* >( type ) ) { if ( hasPolyParams( unionType->get_parameters(), tyVars, env ) ) return type; } return 0; } const ast::Type * isPolyType(const ast::Type * type, const TyVarMap & tyVars, const ast::TypeSubstitution * env) { type = replaceTypeInst( type, env ); if ( auto typeInst = dynamic_cast< const ast::TypeInstType * >( type ) ) { return tyVars.find(typeInst->typeString()) != tyVars.end() ? type : nullptr; } else if ( auto arrayType = dynamic_cast< const ast::ArrayType * >( type ) ) { return isPolyType( arrayType->base, env ); } else if ( auto structType = dynamic_cast< const ast::StructInstType* >( type ) ) { if ( hasPolyParams( structType->params, env ) ) return type; } else if ( auto unionType = dynamic_cast< const ast::UnionInstType* >( type ) ) { if ( hasPolyParams( unionType->params, env ) ) return type; } return nullptr; } const ast::Type * isPolyType( const ast::Type * type, const TypeVarMap & typeVars, const ast::TypeSubstitution * subst ) { type = replaceTypeInst( type, subst ); if ( auto inst = dynamic_cast< const ast::TypeInstType * >( type ) ) { if ( typeVars.find( *inst ) != typeVars.end() ) return type; } else if ( auto array = dynamic_cast< const ast::ArrayType * >( type ) ) { return isPolyType( array->base, subst ); } else if ( auto sue = dynamic_cast< const ast::StructInstType * >( type ) ) { if ( hasPolyParams( sue->params, subst ) ) return type; } else if ( auto sue = dynamic_cast< const ast::UnionInstType * >( type ) ) { if ( hasPolyParams( sue->params, subst ) ) return type; } return nullptr; } ReferenceToType *isDynType( Type *type, const TyVarMap &tyVars, const TypeSubstitution *env ) { type = replaceTypeInst( type, env ); if ( TypeInstType *typeInst = dynamic_cast< TypeInstType * >( type ) ) { auto var = tyVars.find( typeInst->get_name() ); if ( var != tyVars.end() && var->second.isComplete ) { return typeInst; } } else if ( StructInstType *structType = dynamic_cast< StructInstType* >( type ) ) { if ( hasDynParams( structType->get_parameters(), tyVars, env ) ) return structType; } else if ( UnionInstType *unionType = dynamic_cast< UnionInstType* >( type ) ) { if ( hasDynParams( unionType->get_parameters(), tyVars, env ) ) return unionType; } return 0; } const ast::BaseInstType * isDynType( const ast::Type * type, const TypeVarMap & typeVars, const ast::TypeSubstitution * subst ) { type = replaceTypeInst( type, subst ); if ( auto inst = dynamic_cast( type ) ) { auto var = typeVars.find( *inst ); if ( var != typeVars.end() && var->second.isComplete ) { return inst; } } else if ( auto inst = dynamic_cast( type ) ) { if ( hasDynParams( inst->params, typeVars, subst ) ) { return inst; } } else if ( auto inst = dynamic_cast( type ) ) { if ( hasDynParams( inst->params, typeVars, subst ) ) { return inst; } } return nullptr; } ReferenceToType *isDynRet( FunctionType *function, const TyVarMap &forallTypes ) { if ( function->get_returnVals().empty() ) return 0; return (ReferenceToType*)isDynType( function->get_returnVals().front()->get_type(), forallTypes ); } const ast::BaseInstType *isDynRet( const ast::FunctionType * type, const TypeVarMap & typeVars ) { if ( type->returns.empty() ) return nullptr; return isDynType( type->returns.front(), typeVars ); } ReferenceToType *isDynRet( FunctionType *function ) { if ( function->get_returnVals().empty() ) return 0; TyVarMap forallTypes( TypeDecl::Data{} ); makeTyVarMap( function, forallTypes ); return (ReferenceToType*)isDynType( function->get_returnVals().front()->get_type(), forallTypes ); } bool needsAdapter( FunctionType *adaptee, const TyVarMap &tyVars ) { // if ( ! adaptee->get_returnVals().empty() && isPolyType( adaptee->get_returnVals().front()->get_type(), tyVars ) ) { // return true; // } // if if ( isDynRet( adaptee, tyVars ) ) return true; for ( std::list< DeclarationWithType* >::const_iterator innerArg = adaptee->get_parameters().begin(); innerArg != adaptee->get_parameters().end(); ++innerArg ) { // if ( isPolyType( (*innerArg)->get_type(), tyVars ) ) { if ( isDynType( (*innerArg)->get_type(), tyVars ) ) { return true; } // if } // for return false; } bool needsAdapter( ast::FunctionType const * adaptee, const TypeVarMap & typeVars ) { if ( isDynRet( adaptee, typeVars ) ) return true; for ( auto param : adaptee->params ) { if ( isDynType( param, typeVars ) ) { return true; } } return false; } Type *isPolyPtr( Type *type, const TypeSubstitution *env ) { type = replaceTypeInst( type, env ); if ( PointerType *ptr = dynamic_cast< PointerType *>( type ) ) { return isPolyType( ptr->get_base(), env ); } return 0; } Type *isPolyPtr( Type *type, const TyVarMap &tyVars, const TypeSubstitution *env ) { type = replaceTypeInst( type, env ); if ( PointerType *ptr = dynamic_cast< PointerType *>( type ) ) { return isPolyType( ptr->get_base(), tyVars, env ); } return 0; } Type * hasPolyBase( Type *type, int *levels, const TypeSubstitution *env ) { int dummy; if ( ! levels ) { levels = &dummy; } *levels = 0; while ( true ) { type = replaceTypeInst( type, env ); if ( PointerType *ptr = dynamic_cast< PointerType *>( type ) ) { type = ptr->get_base(); ++(*levels); } else break; } return isPolyType( type, env ); } Type * hasPolyBase( Type *type, const TyVarMap &tyVars, int *levels, const TypeSubstitution *env ) { int dummy; if ( ! levels ) { levels = &dummy; } *levels = 0; while ( true ) { type = replaceTypeInst( type, env ); if ( PointerType *ptr = dynamic_cast< PointerType *>( type ) ) { type = ptr->get_base(); ++(*levels); } else break; } return isPolyType( type, tyVars, env ); } ast::Type const * hasPolyBase( ast::Type const * type, const TypeVarMap & typeVars, int * levels, const ast::TypeSubstitution * subst ) { int level_count = 0; while ( true ) { type = replaceTypeInst( type, subst ); if ( auto ptr = dynamic_cast( type ) ) { type = ptr->base; ++level_count; } else { break; } } if ( nullptr != levels ) { *levels = level_count; } return isPolyType( type, typeVars, subst ); } bool includesPolyType( Type *type, const TypeSubstitution *env ) { type = replaceTypeInst( type, env ); if ( dynamic_cast< TypeInstType * >( type ) ) { return true; } else if ( PointerType *pointerType = dynamic_cast< PointerType* >( type ) ) { if ( includesPolyType( pointerType->get_base(), env ) ) return true; } else if ( StructInstType *structType = dynamic_cast< StructInstType* >( type ) ) { if ( includesPolyParams( structType->get_parameters(), env ) ) return true; } else if ( UnionInstType *unionType = dynamic_cast< UnionInstType* >( type ) ) { if ( includesPolyParams( unionType->get_parameters(), env ) ) return true; } return false; } bool includesPolyType( Type *type, const TyVarMap &tyVars, const TypeSubstitution *env ) { type = replaceTypeInst( type, env ); if ( TypeInstType *typeInstType = dynamic_cast< TypeInstType * >( type ) ) { if ( tyVars.find( typeInstType->get_name() ) != tyVars.end() ) { return true; } } else if ( PointerType *pointerType = dynamic_cast< PointerType* >( type ) ) { if ( includesPolyType( pointerType->get_base(), tyVars, env ) ) return true; } else if ( StructInstType *structType = dynamic_cast< StructInstType* >( type ) ) { if ( includesPolyParams( structType->get_parameters(), tyVars, env ) ) return true; } else if ( UnionInstType *unionType = dynamic_cast< UnionInstType* >( type ) ) { if ( includesPolyParams( unionType->get_parameters(), tyVars, env ) ) return true; } return false; } FunctionType * getFunctionType( Type *ty ) { PointerType *ptrType; if ( ( ptrType = dynamic_cast< PointerType* >( ty ) ) ) { return dynamic_cast< FunctionType* >( ptrType->get_base() ); // pointer if FunctionType, NULL otherwise } else { return dynamic_cast< FunctionType* >( ty ); // pointer if FunctionType, NULL otherwise } } const ast::FunctionType * getFunctionType( const ast::Type * ty ) { if ( auto pty = dynamic_cast< const ast::PointerType * >( ty ) ) { return pty->base.as< ast::FunctionType >(); } else { return dynamic_cast< const ast::FunctionType * >( ty ); } } VariableExpr * getBaseVar( Expression *expr, int *levels ) { int dummy; if ( ! levels ) { levels = &dummy; } *levels = 0; while ( true ) { if ( VariableExpr *varExpr = dynamic_cast< VariableExpr* >( expr ) ) { return varExpr; } else if ( MemberExpr *memberExpr = dynamic_cast< MemberExpr* >( expr ) ) { expr = memberExpr->get_aggregate(); } else if ( AddressExpr *addressExpr = dynamic_cast< AddressExpr* >( expr ) ) { expr = addressExpr->get_arg(); } else if ( UntypedExpr *untypedExpr = dynamic_cast< UntypedExpr* >( expr ) ) { // look for compiler-inserted dereference operator NameExpr *fn = dynamic_cast< NameExpr* >( untypedExpr->get_function() ); if ( ! fn || fn->get_name() != std::string("*?") ) return 0; expr = *untypedExpr->begin_args(); } else if ( CommaExpr *commaExpr = dynamic_cast< CommaExpr* >( expr ) ) { // copy constructors insert comma exprs, look at second argument which contains the variable expr = commaExpr->get_arg2(); continue; } else if ( ConditionalExpr * condExpr = dynamic_cast< ConditionalExpr * >( expr ) ) { int lvl1; int lvl2; VariableExpr * var1 = getBaseVar( condExpr->get_arg2(), &lvl1 ); VariableExpr * var2 = getBaseVar( condExpr->get_arg3(), &lvl2 ); if ( lvl1 == lvl2 && var1 && var2 && var1->get_var() == var2->get_var() ) { *levels = lvl1; return var1; } break; } else break; ++(*levels); } return 0; } namespace { /// Checks if is a pointer to D template bool is( const B* p ) { return type_index{typeid(D)} == type_index{typeid(*p)}; } /// Converts to a pointer to D without checking for safety template inline D* as( B* p ) { return reinterpret_cast(p); } template inline D const * as( B const * p ) { return reinterpret_cast( p ); } /// Flattens a declaration list template void flattenList( list< DeclarationWithType* > src, Output out ) { for ( DeclarationWithType* decl : src ) { ResolvExpr::flatten( decl->get_type(), out ); } } /// Flattens a list of types template void flattenList( list< Type* > src, Output out ) { for ( Type* ty : src ) { ResolvExpr::flatten( ty, out ); } } void flattenList( vector> const & src, vector> & out ) { for ( auto const & type : src ) { ResolvExpr::flatten( type, out ); } } /// Checks if two lists of parameters are equal up to polymorphic substitution. bool paramListsPolyCompatible( const list< Expression* >& aparams, const list< Expression* >& bparams ) { if ( aparams.size() != bparams.size() ) return false; for ( list< Expression* >::const_iterator at = aparams.begin(), bt = bparams.begin(); at != aparams.end(); ++at, ++bt ) { TypeExpr *aparam = dynamic_cast< TypeExpr* >(*at); assertf(aparam, "Aggregate parameters should be type expressions"); TypeExpr *bparam = dynamic_cast< TypeExpr* >(*bt); assertf(bparam, "Aggregate parameters should be type expressions"); // xxx - might need to let VoidType be a wildcard here too; could have some voids // stuffed in for dtype-statics. // if ( is( aparam->get_type() ) || is( bparam->get_type() ) ) continue; if ( ! typesPolyCompatible( aparam->get_type(), bparam->get_type() ) ) return false; } return true; } bool paramListsPolyCompatible( std::vector> const & lparams, std::vector> const & rparams ) { if ( lparams.size() != rparams.size() ) { return false; } for ( auto lparam = lparams.begin(), rparam = rparams.begin() ; lparam != lparams.end() ; ++lparam, ++rparam ) { ast::TypeExpr const * lexpr = lparam->as(); assertf( lexpr, "Aggregate parameters should be type expressions" ); ast::TypeExpr const * rexpr = rparam->as(); assertf( rexpr, "Aggregate parameters should be type expressions" ); // xxx - might need to let VoidType be a wildcard here too; could have some voids // stuffed in for dtype-statics. // if ( is( lexpr->type() ) || is( bparam->get_type() ) ) continue; if ( !typesPolyCompatible( lexpr->type, rexpr->type ) ) { return false; } } return true; } } bool typesPolyCompatible( Type *a, Type *b ) { type_index aid{ typeid(*a) }; // polymorphic types always match if ( aid == type_index{typeid(TypeInstType)} ) return true; type_index bid{ typeid(*b) }; // polymorphic types always match if ( bid == type_index{typeid(TypeInstType)} ) return true; // can't match otherwise if different types if ( aid != bid ) return false; // recurse through type structure (conditions borrowed from Unify.cc) if ( aid == type_index{typeid(BasicType)} ) { return as(a)->get_kind() == as(b)->get_kind(); } else if ( aid == type_index{typeid(PointerType)} ) { PointerType *ap = as(a), *bp = as(b); // void pointers should match any other pointer type return is( ap->get_base() ) || is( bp->get_base() ) || typesPolyCompatible( ap->get_base(), bp->get_base() ); } else if ( aid == type_index{typeid(ReferenceType)} ) { ReferenceType *ap = as(a), *bp = as(b); return is( ap->get_base() ) || is( bp->get_base() ) || typesPolyCompatible( ap->get_base(), bp->get_base() ); } else if ( aid == type_index{typeid(ArrayType)} ) { ArrayType *aa = as(a), *ba = as(b); if ( aa->get_isVarLen() ) { if ( ! ba->get_isVarLen() ) return false; } else { if ( ba->get_isVarLen() ) return false; ConstantExpr *ad = dynamic_cast( aa->get_dimension() ); ConstantExpr *bd = dynamic_cast( ba->get_dimension() ); if ( ad && bd && ad->get_constant()->get_value() != bd->get_constant()->get_value() ) return false; } return typesPolyCompatible( aa->get_base(), ba->get_base() ); } else if ( aid == type_index{typeid(FunctionType)} ) { FunctionType *af = as(a), *bf = as(b); vector aparams, bparams; flattenList( af->get_parameters(), back_inserter( aparams ) ); flattenList( bf->get_parameters(), back_inserter( bparams ) ); if ( aparams.size() != bparams.size() ) return false; vector areturns, breturns; flattenList( af->get_returnVals(), back_inserter( areturns ) ); flattenList( bf->get_returnVals(), back_inserter( breturns ) ); if ( areturns.size() != breturns.size() ) return false; for ( unsigned i = 0; i < aparams.size(); ++i ) { if ( ! typesPolyCompatible( aparams[i], bparams[i] ) ) return false; } for ( unsigned i = 0; i < areturns.size(); ++i ) { if ( ! typesPolyCompatible( areturns[i], breturns[i] ) ) return false; } return true; } else if ( aid == type_index{typeid(StructInstType)} ) { StructInstType *aa = as(a), *ba = as(b); if ( aa->get_name() != ba->get_name() ) return false; return paramListsPolyCompatible( aa->get_parameters(), ba->get_parameters() ); } else if ( aid == type_index{typeid(UnionInstType)} ) { UnionInstType *aa = as(a), *ba = as(b); if ( aa->get_name() != ba->get_name() ) return false; return paramListsPolyCompatible( aa->get_parameters(), ba->get_parameters() ); } else if ( aid == type_index{typeid(EnumInstType)} ) { return as(a)->get_name() == as(b)->get_name(); } else if ( aid == type_index{typeid(TraitInstType)} ) { return as(a)->get_name() == as(b)->get_name(); } else if ( aid == type_index{typeid(TupleType)} ) { TupleType *at = as(a), *bt = as(b); vector atypes, btypes; flattenList( at->get_types(), back_inserter( atypes ) ); flattenList( bt->get_types(), back_inserter( btypes ) ); if ( atypes.size() != btypes.size() ) return false; for ( unsigned i = 0; i < atypes.size(); ++i ) { if ( ! typesPolyCompatible( atypes[i], btypes[i] ) ) return false; } return true; } else return true; // VoidType, VarArgsType, ZeroType & OneType just need the same type } bool typesPolyCompatible( ast::Type const * lhs, ast::Type const * rhs ) { type_index const lid = typeid(*lhs); // Polymorphic types always match: if ( type_index(typeid(ast::TypeInstType)) == lid ) return true; type_index const rid = typeid(*rhs); if ( type_index(typeid(ast::TypeInstType)) == rid ) return true; // All other types only match if they are the same type: if ( lid != rid ) return false; // So remaining types can be examined case by case. // Recurse through type structure (conditions borrowed from Unify.cc). if ( type_index(typeid(ast::BasicType)) == lid ) { return as(lhs)->kind == as(rhs)->kind; } else if ( type_index(typeid(ast::PointerType)) == lid ) { ast::PointerType const * l = as(lhs); ast::PointerType const * r = as(rhs); // void pointers should match any other pointer type. return is( l->base.get() ) || is( r->base.get() ) || typesPolyCompatible( l->base.get(), r->base.get() ); } else if ( type_index(typeid(ast::ReferenceType)) == lid ) { ast::ReferenceType const * l = as(lhs); ast::ReferenceType const * r = as(rhs); // void references should match any other reference type. return is( l->base.get() ) || is( r->base.get() ) || typesPolyCompatible( l->base.get(), r->base.get() ); } else if ( type_index(typeid(ast::ArrayType)) == lid ) { ast::ArrayType const * l = as(lhs); ast::ArrayType const * r = as(rhs); if ( l->isVarLen ) { if ( !r->isVarLen ) return false; } else { if ( r->isVarLen ) return false; auto lc = l->dimension.as(); auto rc = r->dimension.as(); if ( lc && rc && lc->intValue() != rc->intValue() ) { return false; } } return typesPolyCompatible( l->base.get(), r->base.get() ); } else if ( type_index(typeid(ast::FunctionType)) == lid ) { ast::FunctionType const * l = as(lhs); ast::FunctionType const * r = as(rhs); std::vector> lparams, rparams; flattenList( l->params, lparams ); flattenList( r->params, rparams ); if ( lparams.size() != rparams.size() ) return false; for ( unsigned i = 0; i < lparams.size(); ++i ) { if ( !typesPolyCompatible( lparams[i], rparams[i] ) ) return false; } std::vector> lrets, rrets; flattenList( l->returns, lrets ); flattenList( r->returns, rrets ); if ( lrets.size() != rrets.size() ) return false; for ( unsigned i = 0; i < lrets.size(); ++i ) { if ( !typesPolyCompatible( lrets[i], rrets[i] ) ) return false; } return true; } else if ( type_index(typeid(ast::StructInstType)) == lid ) { ast::StructInstType const * l = as(lhs); ast::StructInstType const * r = as(rhs); if ( l->name != r->name ) return false; return paramListsPolyCompatible( l->params, r->params ); } else if ( type_index(typeid(ast::UnionInstType)) == lid ) { ast::UnionInstType const * l = as(lhs); ast::UnionInstType const * r = as(rhs); if ( l->name != r->name ) return false; return paramListsPolyCompatible( l->params, r->params ); } else if ( type_index(typeid(ast::EnumInstType)) == lid ) { ast::EnumInstType const * l = as(lhs); ast::EnumInstType const * r = as(rhs); return l->name == r->name; } else if ( type_index(typeid(ast::TraitInstType)) == lid ) { ast::TraitInstType const * l = as(lhs); ast::TraitInstType const * r = as(rhs); return l->name == r->name; } else if ( type_index(typeid(ast::TupleType)) == lid ) { ast::TupleType const * l = as(lhs); ast::TupleType const * r = as(rhs); std::vector> ltypes, rtypes; flattenList( l->types, ( ltypes ) ); flattenList( r->types, ( rtypes ) ); if ( ltypes.size() != rtypes.size() ) return false; for ( unsigned i = 0 ; i < ltypes.size() ; ++i ) { if ( !typesPolyCompatible( ltypes[i], rtypes[i] ) ) return false; } return true; // The remaining types (VoidType, VarArgsType, ZeroType & OneType) // have no variation so will always be equal. } else { return true; } } bool needsBoxing( Type * param, Type * arg, const TyVarMap &exprTyVars, const TypeSubstitution * env ) { // is parameter is not polymorphic, don't need to box if ( ! isPolyType( param, exprTyVars ) ) return false; Type * newType = arg->clone(); if ( env ) env->apply( newType ); std::unique_ptr manager( newType ); // if the argument's type is polymorphic, we don't need to box again! return ! isPolyType( newType ); } bool needsBoxing( const ast::Type * param, const ast::Type * arg, const TypeVarMap & typeVars, const ast::TypeSubstitution * subst ) { // Don't need to box if the parameter is not polymorphic. if ( !isPolyType( param, typeVars ) ) return false; ast::ptr newType = arg; if ( subst ) { int count = subst->apply( newType ); (void)count; } // Only need to box if the argument is not also polymorphic. return !isPolyType( newType ); } bool needsBoxing( Type * param, Type * arg, ApplicationExpr * appExpr, const TypeSubstitution * env ) { FunctionType * function = getFunctionType( appExpr->function->result ); assertf( function, "ApplicationExpr has non-function type: %s", toString( appExpr->function->result ).c_str() ); TyVarMap exprTyVars( TypeDecl::Data{} ); makeTyVarMap( function, exprTyVars ); return needsBoxing( param, arg, exprTyVars, env ); } bool needsBoxing( const ast::Type * param, const ast::Type * arg, const ast::ApplicationExpr * expr, const ast::TypeSubstitution * subst ) { const ast::FunctionType * function = getFunctionType( expr->func->result ); assertf( function, "ApplicationExpr has non-function type: %s", toString( expr->func->result ).c_str() ); TypeVarMap exprTyVars = { ast::TypeDecl::Data() }; makeTypeVarMap( function, exprTyVars ); return needsBoxing( param, arg, exprTyVars, subst ); } void addToTyVarMap( TypeDecl * tyVar, TyVarMap &tyVarMap ) { tyVarMap.insert( tyVar->name, TypeDecl::Data{ tyVar } ); } void addToTypeVarMap( const ast::TypeInstType * type, TypeVarMap & typeVars ) { typeVars.insert( *type, ast::TypeDecl::Data( type->base ) ); } void makeTyVarMap( Type *type, TyVarMap &tyVarMap ) { for ( Type::ForallList::const_iterator tyVar = type->get_forall().begin(); tyVar != type->get_forall().end(); ++tyVar ) { assert( *tyVar ); addToTyVarMap( *tyVar, tyVarMap ); } if ( PointerType *pointer = dynamic_cast< PointerType* >( type ) ) { makeTyVarMap( pointer->get_base(), tyVarMap ); } } void makeTypeVarMap( const ast::Type * type, TypeVarMap & typeVars ) { if ( auto func = dynamic_cast( type ) ) { for ( auto & typeVar : func->forall ) { assert( typeVar ); addToTypeVarMap( typeVar, typeVars ); } } if ( auto pointer = dynamic_cast( type ) ) { makeTypeVarMap( pointer->base, typeVars ); } } void printTyVarMap( std::ostream &os, const TyVarMap &tyVarMap ) { for ( TyVarMap::const_iterator i = tyVarMap.begin(); i != tyVarMap.end(); ++i ) { os << i->first << " (" << i->second << ") "; } // for os << std::endl; } } // namespace GenPoly // Local Variables: // // tab-width: 4 // // mode: c++ // // compile-command: "make install" // // End: //