// // Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo // // The contents of this file are covered under the licence agreement in the // file "LICENCE" distributed with Cforall. // // Box.cc -- // // Author : Richard C. Bilson // Created On : Mon May 18 07:44:20 2015 // Last Modified By : Peter A. Buhr // Last Modified On : Wed Jun 21 15:49:59 2017 // Update Count : 346 // #include // for mismatch #include // for assert, strict_dynamic_cast #include // for operator<<, stringstream #include // for list, list<>::iterator, _Lis... #include // for _Rb_tree_const_iterator, map #include // for auto_ptr #include // for set #include // for string, allocator, basic_string #include // for pair #include "Box.h" #include "CodeGen/OperatorTable.h" #include "Common/PassVisitor.h" // for PassVisitor #include "Common/ScopedMap.h" // for ScopedMap, ScopedMap<>::iter... #include "Common/SemanticError.h" // for SemanticError #include "Common/UniqueName.h" // for UniqueName #include "Common/utility.h" // for toString #include "FindFunction.h" // for findFunction, findAndReplace... #include "GenPoly/ErasableScopedMap.h" // for ErasableScopedMap<>::const_i... #include "GenPoly/GenPoly.h" // for TyVarMap, isPolyType, mangle... #include "InitTweak/InitTweak.h" // for getFunctionName, isAssignment #include "Lvalue.h" // for generalizedLvalue #include "Parser/LinkageSpec.h" // for C, Spec, Cforall, Intrinsic #include "ResolvExpr/TypeEnvironment.h" // for EqvClass #include "ResolvExpr/typeops.h" // for typesCompatible #include "ScopedSet.h" // for ScopedSet, ScopedSet<>::iter... #include "ScrubTyVars.h" // for ScrubTyVars #include "SymTab/Indexer.h" // for Indexer #include "SymTab/Mangler.h" // for Mangler #include "SynTree/Attribute.h" // for Attribute #include "SynTree/Constant.h" // for Constant #include "SynTree/Declaration.h" // for DeclarationWithType, ObjectDecl #include "SynTree/Expression.h" // for ApplicationExpr, UntypedExpr #include "SynTree/Initializer.h" // for SingleInit, Initializer, Lis... #include "SynTree/Label.h" // for Label #include "SynTree/Mutator.h" // for maybeMutate, Mutator, mutateAll #include "SynTree/Statement.h" // for ExprStmt, DeclStmt, ReturnStmt #include "SynTree/SynTree.h" // for UniqueId #include "SynTree/Type.h" // for Type, FunctionType, PointerType #include "SynTree/TypeSubstitution.h" // for TypeSubstitution, operator<< namespace GenPoly { namespace { FunctionType *makeAdapterType( FunctionType *adaptee, const TyVarMap &tyVars ); class BoxPass { protected: BoxPass() : scopeTyVars( TypeDecl::Data{} ) {} TyVarMap scopeTyVars; }; /// Adds layout-generation functions to polymorphic types class LayoutFunctionBuilder final : public WithDeclsToAdd, public WithVisitorRef, public WithShortCircuiting { unsigned int functionNesting = 0; // current level of nested functions public: void previsit( FunctionDecl *functionDecl ); void previsit( StructDecl *structDecl ); void previsit( UnionDecl *unionDecl ); }; /// Replaces polymorphic return types with out-parameters, replaces calls to polymorphic functions with adapter calls as needed, and adds appropriate type variables to the function call class Pass1 final : public BoxPass, public WithTypeSubstitution, public WithStmtsToAdd, public WithGuards, public WithVisitorRef, public WithShortCircuiting { public: Pass1(); void premutate( FunctionDecl * functionDecl ); void premutate( TypeDecl * typeDecl ); void premutate( CommaExpr * commaExpr ); Expression * postmutate( ApplicationExpr * appExpr ); Expression * postmutate( UntypedExpr *expr ); void premutate( AddressExpr * addrExpr ); Expression * postmutate( AddressExpr * addrExpr ); void premutate( ReturnStmt * returnStmt ); void premutate( PointerType * pointerType ); void premutate( FunctionType * functionType ); void beginScope(); void endScope(); private: /// Pass the extra type parameters from polymorphic generic arguments or return types into a function application void passArgTypeVars( ApplicationExpr *appExpr, Type *parmType, Type *argBaseType, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars, std::set< std::string > &seenTypes ); /// passes extra type parameters into a polymorphic function application void passTypeVars( ApplicationExpr *appExpr, Type *polyRetType, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars ); /// wraps a function application with a new temporary for the out-parameter return value Expression *addRetParam( ApplicationExpr *appExpr, Type *retType, std::list< Expression *>::iterator &arg ); /// Replaces all the type parameters of a generic type with their concrete equivalents under the current environment void replaceParametersWithConcrete( ApplicationExpr *appExpr, std::list< Expression* >& params ); /// Replaces a polymorphic type with its concrete equivalant under the current environment (returns itself if concrete). /// If `doClone` is set to false, will not clone interior types Type *replaceWithConcrete( ApplicationExpr *appExpr, Type *type, bool doClone = true ); /// wraps a function application returning a polymorphic type with a new temporary for the out-parameter return value Expression *addDynRetParam( ApplicationExpr *appExpr, Type *polyType, std::list< Expression *>::iterator &arg ); Expression *applyAdapter( ApplicationExpr *appExpr, FunctionType *function, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars ); void boxParam( Type *formal, Expression *&arg, const TyVarMap &exprTyVars ); void boxParams( ApplicationExpr *appExpr, FunctionType *function, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars ); void addInferredParams( ApplicationExpr *appExpr, FunctionType *functionType, std::list< Expression *>::iterator &arg, const TyVarMap &tyVars ); /// Stores assignment operators from assertion list in local map of assignment operations void passAdapters( ApplicationExpr *appExpr, FunctionType *functionType, const TyVarMap &exprTyVars ); FunctionDecl *makeAdapter( FunctionType *adaptee, FunctionType *realType, const std::string &mangleName, const TyVarMap &tyVars ); /// Replaces intrinsic operator functions with their arithmetic desugaring Expression *handleIntrinsics( ApplicationExpr *appExpr ); /// Inserts a new temporary variable into the current scope with an auto-generated name ObjectDecl *makeTemporary( Type *type ); ScopedMap< std::string, DeclarationWithType* > adapters; ///< Set of adapter functions in the current scope std::map< ApplicationExpr *, Expression * > retVals; DeclarationWithType *retval; UniqueName tempNamer; }; /// * Moves polymorphic returns in function types to pointer-type parameters /// * adds type size and assertion parameters to parameter lists struct Pass2 final : public BoxPass, public WithGuards { void handleAggDecl(); DeclarationWithType * postmutate( FunctionDecl *functionDecl ); void premutate( StructDecl *structDecl ); void premutate( UnionDecl *unionDecl ); void premutate( TraitDecl *unionDecl ); void premutate( TypeDecl *typeDecl ); void premutate( PointerType *pointerType ); void premutate( FunctionType *funcType ); private: void addAdapters( FunctionType *functionType ); std::map< UniqueId, std::string > adapterName; }; /// Replaces member and size/align/offsetof expressions on polymorphic generic types with calculated expressions. /// * Replaces member expressions for polymorphic types with calculated add-field-offset-and-dereference /// * Calculates polymorphic offsetof expressions from offset array /// * Inserts dynamic calculation of polymorphic type layouts where needed class PolyGenericCalculator final : public BoxPass, public WithGuards, public WithVisitorRef, public WithStmtsToAdd, public WithDeclsToAdd, public WithTypeSubstitution { public: PolyGenericCalculator(); void premutate( ObjectDecl *objectDecl ); void premutate( FunctionDecl *functionDecl ); void premutate( TypedefDecl *objectDecl ); void premutate( TypeDecl *objectDecl ); Declaration * postmutate( TypeDecl *TraitDecl ); void premutate( PointerType *pointerType ); void premutate( FunctionType *funcType ); void premutate( DeclStmt *declStmt ); Expression *postmutate( MemberExpr *memberExpr ); void premutate( AddressExpr *addrExpr ); Expression *postmutate( AddressExpr *addrExpr ); Expression *postmutate( SizeofExpr *sizeofExpr ); Expression *postmutate( AlignofExpr *alignofExpr ); Expression *postmutate( OffsetofExpr *offsetofExpr ); Expression *postmutate( OffsetPackExpr *offsetPackExpr ); void premutate( StructDecl * ); void premutate( UnionDecl * ); void beginScope(); void endScope(); private: /// Makes a new variable in the current scope with the given name, type & optional initializer ObjectDecl *makeVar( const std::string &name, Type *type, Initializer *init = 0 ); /// returns true if the type has a dynamic layout; such a layout will be stored in appropriately-named local variables when the function returns bool findGeneric( Type *ty ); /// adds type parameters to the layout call; will generate the appropriate parameters if needed void addOtypeParamsToLayoutCall( UntypedExpr *layoutCall, const std::list< Type* > &otypeParams ); /// change the type of generic aggregate members to char[] void mutateMembers( AggregateDecl * aggrDecl ); /// returns the calculated sizeof expression for ty, or nullptr for use C sizeof() Expression* genSizeof( Type* ty ); /// Enters a new scope for type-variables, adding the type variables from ty void beginTypeScope( Type *ty ); /// Exits the type-variable scope void endTypeScope(); /// Enters a new scope for knowLayouts and knownOffsets and queues exit calls void beginGenericScope(); ScopedSet< std::string > knownLayouts; ///< Set of generic type layouts known in the current scope, indexed by sizeofName ScopedSet< std::string > knownOffsets; ///< Set of non-generic types for which the offset array exists in the current scope, indexed by offsetofName UniqueName bufNamer; ///< Namer for VLA buffers Expression * addrMember = nullptr; ///< AddressExpr argument is MemberExpr? }; /// Replaces initialization of polymorphic values with alloca, declaration of dtype/ftype with appropriate void expression, sizeof expressions of polymorphic types with the proper variable, and strips fields from generic struct declarations. struct Pass3 final : public BoxPass, public WithGuards { template< typename DeclClass > void handleDecl( DeclClass * decl, Type * type ); void premutate( ObjectDecl * objectDecl ); void premutate( FunctionDecl * functionDecl ); void premutate( TypedefDecl * typedefDecl ); void premutate( StructDecl * structDecl ); void premutate( UnionDecl * unionDecl ); void premutate( TypeDecl * typeDecl ); void premutate( PointerType * pointerType ); void premutate( FunctionType * funcType ); }; } // anonymous namespace /// version of mutateAll with special handling for translation unit so you can check the end of the prelude when debugging template< typename MutatorType > inline void mutateTranslationUnit( std::list< Declaration* > &translationUnit, MutatorType &mutator ) { bool seenIntrinsic = false; SemanticErrorException errors; for ( typename std::list< Declaration* >::iterator i = translationUnit.begin(); i != translationUnit.end(); ++i ) { try { if ( *i ) { if ( (*i)->get_linkage() == LinkageSpec::Intrinsic ) { seenIntrinsic = true; } else if ( seenIntrinsic ) { seenIntrinsic = false; // break on this line when debugging for end of prelude } *i = dynamic_cast< Declaration* >( (*i)->acceptMutator( mutator ) ); assert( *i ); } // if } catch( SemanticErrorException &e ) { errors.append( e ); } // try } // for if ( ! errors.isEmpty() ) { throw errors; } // if } void box( std::list< Declaration *>& translationUnit ) { PassVisitor layoutBuilder; PassVisitor pass1; PassVisitor pass2; PassVisitor polyCalculator; PassVisitor pass3; acceptAll( translationUnit, layoutBuilder ); mutateAll( translationUnit, pass1 ); mutateAll( translationUnit, pass2 ); mutateAll( translationUnit, polyCalculator ); mutateAll( translationUnit, pass3 ); } ////////////////////////////////// LayoutFunctionBuilder //////////////////////////////////////////// void LayoutFunctionBuilder::previsit( FunctionDecl *functionDecl ) { visit_children = false; maybeAccept( functionDecl->get_functionType(), *visitor ); ++functionNesting; maybeAccept( functionDecl->get_statements(), *visitor ); --functionNesting; } /// Get a list of type declarations that will affect a layout function std::list< TypeDecl* > takeOtypeOnly( std::list< TypeDecl* > &decls ) { std::list< TypeDecl * > otypeDecls; for ( std::list< TypeDecl* >::const_iterator decl = decls.begin(); decl != decls.end(); ++decl ) { if ( (*decl)->isComplete() ) { otypeDecls.push_back( *decl ); } } return otypeDecls; } /// Adds parameters for otype layout to a function type void addOtypeParams( FunctionType *layoutFnType, std::list< TypeDecl* > &otypeParams ) { BasicType sizeAlignType( Type::Qualifiers(), BasicType::LongUnsignedInt ); for ( std::list< TypeDecl* >::const_iterator param = otypeParams.begin(); param != otypeParams.end(); ++param ) { TypeInstType paramType( Type::Qualifiers(), (*param)->get_name(), *param ); std::string paramName = mangleType( ¶mType ); layoutFnType->get_parameters().push_back( new ObjectDecl( sizeofName( paramName ), Type::StorageClasses(), LinkageSpec::Cforall, 0, sizeAlignType.clone(), 0 ) ); layoutFnType->get_parameters().push_back( new ObjectDecl( alignofName( paramName ), Type::StorageClasses(), LinkageSpec::Cforall, 0, sizeAlignType.clone(), 0 ) ); } } /// Builds a layout function declaration FunctionDecl *buildLayoutFunctionDecl( AggregateDecl *typeDecl, unsigned int functionNesting, FunctionType *layoutFnType ) { // Routines at global scope marked "static" to prevent multiple definitions is separate translation units // because each unit generates copies of the default routines for each aggregate. FunctionDecl *layoutDecl = new FunctionDecl( layoutofName( typeDecl ), functionNesting > 0 ? Type::StorageClasses() : Type::StorageClasses( Type::Static ), LinkageSpec::AutoGen, layoutFnType, new CompoundStmt(), std::list< Attribute * >(), Type::FuncSpecifiers( Type::Inline ) ); layoutDecl->fixUniqueId(); return layoutDecl; } /// Makes a unary operation Expression *makeOp( const std::string &name, Expression *arg ) { UntypedExpr *expr = new UntypedExpr( new NameExpr( name ) ); expr->args.push_back( arg ); return expr; } /// Makes a binary operation Expression *makeOp( const std::string &name, Expression *lhs, Expression *rhs ) { UntypedExpr *expr = new UntypedExpr( new NameExpr( name ) ); expr->args.push_back( lhs ); expr->args.push_back( rhs ); return expr; } /// Returns the dereference of a local pointer variable Expression *derefVar( ObjectDecl *var ) { return UntypedExpr::createDeref( new VariableExpr( var ) ); } /// makes an if-statement with a single-expression if-block and no then block Statement *makeCond( Expression *cond, Expression *ifPart ) { return new IfStmt( cond, new ExprStmt( ifPart ), 0 ); } /// makes a statement that assigns rhs to lhs if lhs < rhs Statement *makeAssignMax( Expression *lhs, Expression *rhs ) { return makeCond( makeOp( "?clone(), rhs->clone() ) ); } /// makes a statement that aligns lhs to rhs (rhs should be an integer power of two) Statement *makeAlignTo( Expression *lhs, Expression *rhs ) { // check that the lhs is zeroed out to the level of rhs Expression *ifCond = makeOp( "?&?", lhs, makeOp( "?-?", rhs, new ConstantExpr( Constant::from_ulong( 1 ) ) ) ); // if not aligned, increment to alignment Expression *ifExpr = makeOp( "?+=?", lhs->clone(), makeOp( "?-?", rhs->clone(), ifCond->clone() ) ); return makeCond( ifCond, ifExpr ); } /// adds an expression to a compound statement void addExpr( CompoundStmt *stmts, Expression *expr ) { stmts->get_kids().push_back( new ExprStmt( expr ) ); } /// adds a statement to a compound statement void addStmt( CompoundStmt *stmts, Statement *stmt ) { stmts->get_kids().push_back( stmt ); } void LayoutFunctionBuilder::previsit( StructDecl *structDecl ) { // do not generate layout function for "empty" tag structs visit_children = false; if ( structDecl->get_members().empty() ) return; // get parameters that can change layout, exiting early if none std::list< TypeDecl* > otypeParams = takeOtypeOnly( structDecl->get_parameters() ); if ( otypeParams.empty() ) return; // build layout function signature FunctionType *layoutFnType = new FunctionType( Type::Qualifiers(), false ); BasicType *sizeAlignType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ); PointerType *sizeAlignOutType = new PointerType( Type::Qualifiers(), sizeAlignType ); ObjectDecl *sizeParam = new ObjectDecl( sizeofName( structDecl->get_name() ), Type::StorageClasses(), LinkageSpec::Cforall, 0, sizeAlignOutType, 0 ); layoutFnType->get_parameters().push_back( sizeParam ); ObjectDecl *alignParam = new ObjectDecl( alignofName( structDecl->get_name() ), Type::StorageClasses(), LinkageSpec::Cforall, 0, sizeAlignOutType->clone(), 0 ); layoutFnType->get_parameters().push_back( alignParam ); ObjectDecl *offsetParam = new ObjectDecl( offsetofName( structDecl->get_name() ), Type::StorageClasses(), LinkageSpec::Cforall, 0, sizeAlignOutType->clone(), 0 ); layoutFnType->get_parameters().push_back( offsetParam ); addOtypeParams( layoutFnType, otypeParams ); // build function decl FunctionDecl *layoutDecl = buildLayoutFunctionDecl( structDecl, functionNesting, layoutFnType ); // calculate struct layout in function body // initialize size and alignment to 0 and 1 (will have at least one member to re-edit size) addExpr( layoutDecl->get_statements(), makeOp( "?=?", derefVar( sizeParam ), new ConstantExpr( Constant::from_ulong( 0 ) ) ) ); addExpr( layoutDecl->get_statements(), makeOp( "?=?", derefVar( alignParam ), new ConstantExpr( Constant::from_ulong( 1 ) ) ) ); unsigned long n_members = 0; bool firstMember = true; for ( Declaration* member : structDecl->get_members() ) { DeclarationWithType *dwt = dynamic_cast< DeclarationWithType * >( member ); assert( dwt ); Type *memberType = dwt->get_type(); if ( firstMember ) { firstMember = false; } else { // make sure all members after the first (automatically aligned at 0) are properly padded for alignment addStmt( layoutDecl->get_statements(), makeAlignTo( derefVar( sizeParam ), new AlignofExpr( memberType->clone() ) ) ); } // place current size in the current offset index addExpr( layoutDecl->get_statements(), makeOp( "?=?", makeOp( "?[?]", new VariableExpr( offsetParam ), new ConstantExpr( Constant::from_ulong( n_members ) ) ), derefVar( sizeParam ) ) ); ++n_members; // add member size to current size addExpr( layoutDecl->get_statements(), makeOp( "?+=?", derefVar( sizeParam ), new SizeofExpr( memberType->clone() ) ) ); // take max of member alignment and global alignment addStmt( layoutDecl->get_statements(), makeAssignMax( derefVar( alignParam ), new AlignofExpr( memberType->clone() ) ) ); } // make sure the type is end-padded to a multiple of its alignment addStmt( layoutDecl->get_statements(), makeAlignTo( derefVar( sizeParam ), derefVar( alignParam ) ) ); declsToAddAfter.push_back( layoutDecl ); } void LayoutFunctionBuilder::previsit( UnionDecl *unionDecl ) { // do not generate layout function for "empty" tag unions visit_children = false; if ( unionDecl->get_members().empty() ) return; // get parameters that can change layout, exiting early if none std::list< TypeDecl* > otypeParams = takeOtypeOnly( unionDecl->get_parameters() ); if ( otypeParams.empty() ) return; // build layout function signature FunctionType *layoutFnType = new FunctionType( Type::Qualifiers(), false ); BasicType *sizeAlignType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ); PointerType *sizeAlignOutType = new PointerType( Type::Qualifiers(), sizeAlignType ); ObjectDecl *sizeParam = new ObjectDecl( sizeofName( unionDecl->get_name() ), Type::StorageClasses(), LinkageSpec::Cforall, 0, sizeAlignOutType, 0 ); layoutFnType->get_parameters().push_back( sizeParam ); ObjectDecl *alignParam = new ObjectDecl( alignofName( unionDecl->get_name() ), Type::StorageClasses(), LinkageSpec::Cforall, 0, sizeAlignOutType->clone(), 0 ); layoutFnType->get_parameters().push_back( alignParam ); addOtypeParams( layoutFnType, otypeParams ); // build function decl FunctionDecl *layoutDecl = buildLayoutFunctionDecl( unionDecl, functionNesting, layoutFnType ); // calculate union layout in function body addExpr( layoutDecl->get_statements(), makeOp( "?=?", derefVar( sizeParam ), new ConstantExpr( Constant::from_ulong( 1 ) ) ) ); addExpr( layoutDecl->get_statements(), makeOp( "?=?", derefVar( alignParam ), new ConstantExpr( Constant::from_ulong( 1 ) ) ) ); for ( std::list< Declaration* >::const_iterator member = unionDecl->get_members().begin(); member != unionDecl->get_members().end(); ++member ) { DeclarationWithType *dwt = dynamic_cast< DeclarationWithType * >( *member ); assert( dwt ); Type *memberType = dwt->get_type(); // take max member size and global size addStmt( layoutDecl->get_statements(), makeAssignMax( derefVar( sizeParam ), new SizeofExpr( memberType->clone() ) ) ); // take max of member alignment and global alignment addStmt( layoutDecl->get_statements(), makeAssignMax( derefVar( alignParam ), new AlignofExpr( memberType->clone() ) ) ); } // make sure the type is end-padded to a multiple of its alignment addStmt( layoutDecl->get_statements(), makeAlignTo( derefVar( sizeParam ), derefVar( alignParam ) ) ); declsToAddAfter.push_back( layoutDecl ); } ////////////////////////////////////////// Pass1 //////////////////////////////////////////////////// namespace { std::string makePolyMonoSuffix( FunctionType * function, const TyVarMap &tyVars ) { std::stringstream name; // NOTE: this function previously used isPolyObj, which failed to produce // the correct thing in some situations. It's not clear to me why this wasn't working. // if the return type or a parameter type involved polymorphic types, then the adapter will need // to take those polymorphic types as pointers. Therefore, there can be two different functions // with the same mangled name, so we need to further mangle the names. for ( std::list< DeclarationWithType *>::iterator retval = function->get_returnVals().begin(); retval != function->get_returnVals().end(); ++retval ) { if ( isPolyType( (*retval)->get_type(), tyVars ) ) { name << "P"; } else { name << "M"; } } name << "_"; std::list< DeclarationWithType *> ¶mList = function->get_parameters(); for ( std::list< DeclarationWithType *>::iterator arg = paramList.begin(); arg != paramList.end(); ++arg ) { if ( isPolyType( (*arg)->get_type(), tyVars ) ) { name << "P"; } else { name << "M"; } } // for return name.str(); } std::string mangleAdapterName( FunctionType * function, const TyVarMap &tyVars ) { return SymTab::Mangler::mangle( function ) + makePolyMonoSuffix( function, tyVars ); } std::string makeAdapterName( const std::string &mangleName ) { return "_adapter" + mangleName; } Pass1::Pass1() : tempNamer( "_temp" ) {} void Pass1::premutate( FunctionDecl *functionDecl ) { if ( functionDecl->get_statements() ) { // empty routine body ? // std::cerr << "mutating function: " << functionDecl->get_mangleName() << std::endl; GuardScope( scopeTyVars ); GuardValue( retval ); // process polymorphic return value retval = nullptr; FunctionType *functionType = functionDecl->type; if ( isDynRet( functionType ) && functionDecl->linkage != LinkageSpec::C ) { retval = functionType->returnVals.front(); // give names to unnamed return values if ( retval->name == "" ) { retval->name = "_retparm"; retval->linkage = LinkageSpec::C; } // if } // if makeTyVarMap( functionType, scopeTyVars ); std::list< DeclarationWithType *> ¶mList = functionType->parameters; std::list< FunctionType *> functions; for ( Type::ForallList::iterator tyVar = functionType->forall.begin(); tyVar != functionType->forall.end(); ++tyVar ) { for ( std::list< DeclarationWithType *>::iterator assert = (*tyVar)->assertions.begin(); assert != (*tyVar)->assertions.end(); ++assert ) { findFunction( (*assert)->get_type(), functions, scopeTyVars, needsAdapter ); } // for } // for for ( std::list< DeclarationWithType *>::iterator arg = paramList.begin(); arg != paramList.end(); ++arg ) { findFunction( (*arg)->get_type(), functions, scopeTyVars, needsAdapter ); } // for for ( std::list< FunctionType *>::iterator funType = functions.begin(); funType != functions.end(); ++funType ) { std::string mangleName = mangleAdapterName( *funType, scopeTyVars ); if ( adapters.find( mangleName ) == adapters.end() ) { std::string adapterName = makeAdapterName( mangleName ); adapters.insert( std::pair< std::string, DeclarationWithType *>( mangleName, new ObjectDecl( adapterName, Type::StorageClasses(), LinkageSpec::C, nullptr, new PointerType( Type::Qualifiers(), makeAdapterType( *funType, scopeTyVars ) ), nullptr ) ) ); } // if } // for // std::cerr << "end function: " << functionDecl->get_mangleName() << std::endl; } // if } void Pass1::premutate( TypeDecl *typeDecl ) { addToTyVarMap( typeDecl, scopeTyVars ); } void Pass1::premutate( CommaExpr *commaExpr ) { // Attempting to find application expressions that were mutated by the copy constructor passes // to use an explicit return variable, so that the variable can be reused as a parameter to the // call rather than creating a new temp variable. Previously this step was an optimization, but // with the introduction of tuples and UniqueExprs, it is necessary to ensure that they use the same variable. // Essentially, looking for pattern: (x=f(...), x) // To compound the issue, the right side can be *x, etc. because of lvalue-returning functions if ( UntypedExpr * assign = dynamic_cast< UntypedExpr * >( commaExpr->get_arg1() ) ) { if ( CodeGen::isAssignment( InitTweak::getFunctionName( assign ) ) ) { assert( assign->get_args().size() == 2 ); if ( ApplicationExpr * appExpr = dynamic_cast< ApplicationExpr * > ( assign->get_args().back() ) ) { // first argument is assignable, so it must be an lvalue, so it should be legal to take its address. retVals[appExpr] = assign->get_args().front(); } } } } void Pass1::passArgTypeVars( ApplicationExpr *appExpr, Type *parmType, Type *argBaseType, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars, std::set< std::string > &seenTypes ) { Type *polyType = isPolyType( parmType, exprTyVars ); if ( polyType && ! dynamic_cast< TypeInstType* >( polyType ) ) { std::string typeName = mangleType( polyType ); if ( seenTypes.count( typeName ) ) return; arg = appExpr->get_args().insert( arg, new SizeofExpr( argBaseType->clone() ) ); arg++; arg = appExpr->get_args().insert( arg, new AlignofExpr( argBaseType->clone() ) ); arg++; if ( dynamic_cast< StructInstType* >( polyType ) ) { if ( StructInstType *argBaseStructType = dynamic_cast< StructInstType* >( argBaseType ) ) { // zero-length arrays are forbidden by C, so don't pass offset for empty struct if ( ! argBaseStructType->get_baseStruct()->get_members().empty() ) { arg = appExpr->get_args().insert( arg, new OffsetPackExpr( argBaseStructType->clone() ) ); arg++; } } else { SemanticError( argBaseType, "Cannot pass non-struct type for generic struct: " ); } } seenTypes.insert( typeName ); } } void Pass1::passTypeVars( ApplicationExpr *appExpr, Type *polyRetType, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars ) { // pass size/align for type variables for ( TyVarMap::const_iterator tyParm = exprTyVars.begin(); tyParm != exprTyVars.end(); ++tyParm ) { ResolvExpr::EqvClass eqvClass; assert( env ); if ( tyParm->second.isComplete ) { Type *concrete = env->lookup( tyParm->first ); if ( concrete ) { arg = appExpr->get_args().insert( arg, new SizeofExpr( concrete->clone() ) ); arg++; arg = appExpr->get_args().insert( arg, new AlignofExpr( concrete->clone() ) ); arg++; } else { // xxx - should this be an assertion? SemanticError( appExpr, toString( *env, "\nunbound type variable: ", tyParm->first, " in application " ) ); } // if } // if } // for // add size/align for generic types to parameter list if ( ! appExpr->get_function()->result ) return; FunctionType *funcType = getFunctionType( appExpr->get_function()->get_result() ); assert( funcType ); std::list< DeclarationWithType* >::const_iterator fnParm = funcType->get_parameters().begin(); std::list< Expression* >::const_iterator fnArg = arg; std::set< std::string > seenTypes; ///< names for generic types we've seen // a polymorphic return type may need to be added to the argument list if ( polyRetType ) { Type *concRetType = replaceWithConcrete( appExpr, polyRetType ); passArgTypeVars( appExpr, polyRetType, concRetType, arg, exprTyVars, seenTypes ); ++fnArg; // skip the return parameter in the argument list } // add type information args for presently unseen types in parameter list for ( ; fnParm != funcType->get_parameters().end() && fnArg != appExpr->get_args().end(); ++fnParm, ++fnArg ) { if ( ! (*fnArg)->get_result() ) continue; Type * argType = (*fnArg)->get_result(); passArgTypeVars( appExpr, (*fnParm)->get_type(), argType, arg, exprTyVars, seenTypes ); } } ObjectDecl *Pass1::makeTemporary( Type *type ) { ObjectDecl *newObj = new ObjectDecl( tempNamer.newName(), Type::StorageClasses(), LinkageSpec::C, 0, type, 0 ); stmtsToAddBefore.push_back( new DeclStmt( newObj ) ); return newObj; } Expression *Pass1::addRetParam( ApplicationExpr *appExpr, Type *retType, std::list< Expression *>::iterator &arg ) { // Create temporary to hold return value of polymorphic function and produce that temporary as a result // using a comma expression. assert( retType ); Expression * paramExpr = nullptr; // try to use existing return value parameter if it exists, otherwise create a new temporary if ( retVals.count( appExpr ) ) { paramExpr = retVals[appExpr]->clone(); } else { ObjectDecl *newObj = makeTemporary( retType->clone() ); paramExpr = new VariableExpr( newObj ); } Expression * retExpr = paramExpr->clone(); // If the type of the temporary is not polymorphic, box temporary by taking its address; // otherwise the temporary is already boxed and can be used directly. if ( ! isPolyType( paramExpr->get_result(), scopeTyVars, env ) ) { paramExpr = new AddressExpr( paramExpr ); } // if arg = appExpr->get_args().insert( arg, paramExpr ); // add argument to function call arg++; // Build a comma expression to call the function and emulate a normal return. CommaExpr *commaExpr = new CommaExpr( appExpr, retExpr ); commaExpr->set_env( appExpr->get_env() ); appExpr->set_env( 0 ); return commaExpr; } void Pass1::replaceParametersWithConcrete( ApplicationExpr *appExpr, std::list< Expression* >& params ) { for ( std::list< Expression* >::iterator param = params.begin(); param != params.end(); ++param ) { TypeExpr *paramType = dynamic_cast< TypeExpr* >( *param ); assertf(paramType, "Aggregate parameters should be type expressions"); paramType->set_type( replaceWithConcrete( appExpr, paramType->get_type(), false ) ); } } Type *Pass1::replaceWithConcrete( ApplicationExpr *appExpr, Type *type, bool doClone ) { if ( TypeInstType *typeInst = dynamic_cast< TypeInstType * >( type ) ) { Type *concrete = env->lookup( typeInst->get_name() ); if ( concrete == 0 ) { return typeInst; } // if return concrete; } else if ( StructInstType *structType = dynamic_cast< StructInstType* >( type ) ) { if ( doClone ) { structType = structType->clone(); } replaceParametersWithConcrete( appExpr, structType->get_parameters() ); return structType; } else if ( UnionInstType *unionType = dynamic_cast< UnionInstType* >( type ) ) { if ( doClone ) { unionType = unionType->clone(); } replaceParametersWithConcrete( appExpr, unionType->get_parameters() ); return unionType; } return type; } Expression *Pass1::addDynRetParam( ApplicationExpr *appExpr, Type *dynType, std::list< Expression *>::iterator &arg ) { assert( env ); Type *concrete = replaceWithConcrete( appExpr, dynType ); // add out-parameter for return value return addRetParam( appExpr, concrete, arg ); } Expression *Pass1::applyAdapter( ApplicationExpr *appExpr, FunctionType *function, std::list< Expression *>::iterator &arg, const TyVarMap &tyVars ) { Expression *ret = appExpr; // if ( ! function->get_returnVals().empty() && isPolyType( function->get_returnVals().front()->get_type(), tyVars ) ) { if ( isDynRet( function, tyVars ) ) { ret = addRetParam( appExpr, function->get_returnVals().front()->get_type(), arg ); } // if std::string mangleName = mangleAdapterName( function, tyVars ); std::string adapterName = makeAdapterName( mangleName ); // cast adaptee to void (*)(), since it may have any type inside a polymorphic function Type * adapteeType = new PointerType( Type::Qualifiers(), new FunctionType( Type::Qualifiers(), true ) ); appExpr->get_args().push_front( new CastExpr( appExpr->get_function(), adapteeType ) ); appExpr->set_function( new NameExpr( adapterName ) ); // xxx - result is never set on NameExpr return ret; } void Pass1::boxParam( Type *param, Expression *&arg, const TyVarMap &exprTyVars ) { assertf( arg->result, "arg does not have result: %s", toString( arg ).c_str() ); if ( ! needsBoxing( param, arg->result, exprTyVars, env ) ) return; if ( arg->result->get_lvalue() ) { // argument expression may be CFA lvalue, but not C lvalue -- apply generalizedLvalue transformations. // if ( VariableExpr * varExpr = dynamic_cast< VariableExpr * >( arg ) ) { // if ( dynamic_cast( varExpr->var->get_type() ) ){ // // temporary hack - don't box arrays, because &arr is not the same as &arr[0] // return; // } // } arg = generalizedLvalue( new AddressExpr( arg ) ); if ( ! ResolvExpr::typesCompatible( param, arg->get_result(), SymTab::Indexer() ) ) { // silence warnings by casting boxed parameters when the actual type does not match up with the formal type. arg = new CastExpr( arg, param->clone() ); } } else { // use type computed in unification to declare boxed variables Type * newType = param->clone(); if ( env ) env->apply( newType ); ObjectDecl *newObj = ObjectDecl::newObject( tempNamer.newName(), newType, nullptr ); newObj->get_type()->get_qualifiers() = Type::Qualifiers(); // TODO: is this right??? stmtsToAddBefore.push_back( new DeclStmt( newObj ) ); UntypedExpr *assign = new UntypedExpr( new NameExpr( "?=?" ) ); // TODO: why doesn't this just use initialization syntax? assign->get_args().push_back( new VariableExpr( newObj ) ); assign->get_args().push_back( arg ); stmtsToAddBefore.push_back( new ExprStmt( assign ) ); arg = new AddressExpr( new VariableExpr( newObj ) ); } // if } // find instances of polymorphic type parameters struct PolyFinder { const TyVarMap * tyVars = nullptr; bool found = false; void previsit( TypeInstType * t ) { if ( isPolyType( t, *tyVars ) ) { found = true; } } }; // true if there is an instance of a polymorphic type parameter in t bool hasPolymorphism( Type * t, const TyVarMap &tyVars ) { PassVisitor finder; finder.pass.tyVars = &tyVars; maybeAccept( t, finder ); return finder.pass.found; } /// cast parameters to polymorphic functions so that types are replaced with /// void * if they are type parameters in the formal type. /// this gets rid of warnings from gcc. void addCast( Expression *&actual, Type *formal, const TyVarMap &tyVars ) { // type contains polymorphism, but isn't exactly a polytype, in which case it // has some real actual type (e.g. unsigned int) and casting to void * is wrong if ( hasPolymorphism( formal, tyVars ) && ! isPolyType( formal, tyVars ) ) { Type * newType = formal->clone(); newType = ScrubTyVars::scrub( newType, tyVars ); actual = new CastExpr( actual, newType ); } // if } void Pass1::boxParams( ApplicationExpr *appExpr, FunctionType *function, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars ) { for ( std::list< DeclarationWithType *>::const_iterator param = function->get_parameters().begin(); param != function->parameters.end(); ++param, ++arg ) { assertf( arg != appExpr->args.end(), "boxParams: missing argument for param %s to %s in %s", toString( *param ).c_str(), toString( function ).c_str(), toString( appExpr ).c_str() ); addCast( *arg, (*param)->get_type(), exprTyVars ); boxParam( (*param)->get_type(), *arg, exprTyVars ); } // for } void Pass1::addInferredParams( ApplicationExpr *appExpr, FunctionType *functionType, std::list< Expression *>::iterator &arg, const TyVarMap &tyVars ) { std::list< Expression *>::iterator cur = arg; for ( Type::ForallList::iterator tyVar = functionType->get_forall().begin(); tyVar != functionType->get_forall().end(); ++tyVar ) { for ( std::list< DeclarationWithType *>::iterator assert = (*tyVar)->assertions.begin(); assert != (*tyVar)->assertions.end(); ++assert ) { InferredParams::const_iterator inferParam = appExpr->inferParams.find( (*assert)->get_uniqueId() ); assertf( inferParam != appExpr->inferParams.end(), "addInferredParams missing inferred parameter: %s in: %s", toString( *assert ).c_str(), toString( appExpr ).c_str() ); Expression *newExpr = inferParam->second.expr->clone(); addCast( newExpr, (*assert)->get_type(), tyVars ); boxParam( (*assert)->get_type(), newExpr, tyVars ); appExpr->get_args().insert( cur, newExpr ); } // for } // for } void makeRetParm( FunctionType *funcType ) { DeclarationWithType *retParm = funcType->returnVals.front(); // make a new parameter that is a pointer to the type of the old return value retParm->set_type( new PointerType( Type::Qualifiers(), retParm->get_type() ) ); funcType->get_parameters().push_front( retParm ); // we don't need the return value any more funcType->get_returnVals().clear(); } FunctionType *makeAdapterType( FunctionType *adaptee, const TyVarMap &tyVars ) { // actually make the adapter type FunctionType *adapter = adaptee->clone(); if ( isDynRet( adapter, tyVars ) ) { makeRetParm( adapter ); } // if adapter->get_parameters().push_front( new ObjectDecl( "", Type::StorageClasses(), LinkageSpec::C, 0, new PointerType( Type::Qualifiers(), new FunctionType( Type::Qualifiers(), true ) ), 0 ) ); return adapter; } Expression *makeAdapterArg( DeclarationWithType *param, DeclarationWithType *arg, DeclarationWithType *realParam, const TyVarMap &tyVars ) { assert( param ); assert( arg ); if ( isPolyType( realParam->get_type(), tyVars ) ) { if ( ! isPolyType( arg->get_type() ) ) { UntypedExpr *deref = new UntypedExpr( new NameExpr( "*?" ) ); deref->args.push_back( new CastExpr( new VariableExpr( param ), new PointerType( Type::Qualifiers(), arg->get_type()->clone() ) ) ); deref->result = arg->get_type()->clone(); deref->result->set_lvalue( true ); return deref; } // if } // if return new VariableExpr( param ); } void addAdapterParams( ApplicationExpr *adapteeApp, std::list< DeclarationWithType *>::iterator arg, std::list< DeclarationWithType *>::iterator param, std::list< DeclarationWithType *>::iterator paramEnd, std::list< DeclarationWithType *>::iterator realParam, const TyVarMap &tyVars ) { UniqueName paramNamer( "_p" ); for ( ; param != paramEnd; ++param, ++arg, ++realParam ) { if ( (*param)->get_name() == "" ) { (*param)->set_name( paramNamer.newName() ); (*param)->set_linkage( LinkageSpec::C ); } // if adapteeApp->get_args().push_back( makeAdapterArg( *param, *arg, *realParam, tyVars ) ); } // for } FunctionDecl *Pass1::makeAdapter( FunctionType *adaptee, FunctionType *realType, const std::string &mangleName, const TyVarMap &tyVars ) { FunctionType *adapterType = makeAdapterType( adaptee, tyVars ); adapterType = ScrubTyVars::scrub( adapterType, tyVars ); DeclarationWithType *adapteeDecl = adapterType->get_parameters().front(); adapteeDecl->set_name( "_adaptee" ); // do not carry over attributes to real type parameters/return values for ( DeclarationWithType * dwt : realType->parameters ) { deleteAll( dwt->get_type()->attributes ); dwt->get_type()->attributes.clear(); } for ( DeclarationWithType * dwt : realType->returnVals ) { deleteAll( dwt->get_type()->attributes ); dwt->get_type()->attributes.clear(); } ApplicationExpr *adapteeApp = new ApplicationExpr( new CastExpr( new VariableExpr( adapteeDecl ), new PointerType( Type::Qualifiers(), realType ) ) ); Statement *bodyStmt; Type::ForallList::iterator tyArg = realType->get_forall().begin(); Type::ForallList::iterator tyParam = adapterType->get_forall().begin(); Type::ForallList::iterator realTyParam = adaptee->get_forall().begin(); for ( ; tyParam != adapterType->get_forall().end(); ++tyArg, ++tyParam, ++realTyParam ) { assert( tyArg != realType->get_forall().end() ); std::list< DeclarationWithType *>::iterator assertArg = (*tyArg)->get_assertions().begin(); std::list< DeclarationWithType *>::iterator assertParam = (*tyParam)->get_assertions().begin(); std::list< DeclarationWithType *>::iterator realAssertParam = (*realTyParam)->get_assertions().begin(); for ( ; assertParam != (*tyParam)->get_assertions().end(); ++assertArg, ++assertParam, ++realAssertParam ) { assert( assertArg != (*tyArg)->get_assertions().end() ); adapteeApp->get_args().push_back( makeAdapterArg( *assertParam, *assertArg, *realAssertParam, tyVars ) ); } // for } // for std::list< DeclarationWithType *>::iterator arg = realType->get_parameters().begin(); std::list< DeclarationWithType *>::iterator param = adapterType->get_parameters().begin(); std::list< DeclarationWithType *>::iterator realParam = adaptee->get_parameters().begin(); param++; // skip adaptee parameter in the adapter type if ( realType->get_returnVals().empty() ) { // void return addAdapterParams( adapteeApp, arg, param, adapterType->get_parameters().end(), realParam, tyVars ); bodyStmt = new ExprStmt( adapteeApp ); } else if ( isDynType( adaptee->get_returnVals().front()->get_type(), tyVars ) ) { // return type T if ( (*param)->get_name() == "" ) { (*param)->set_name( "_ret" ); (*param)->set_linkage( LinkageSpec::C ); } // if UntypedExpr *assign = new UntypedExpr( new NameExpr( "?=?" ) ); UntypedExpr *deref = UntypedExpr::createDeref( new CastExpr( new VariableExpr( *param++ ), new PointerType( Type::Qualifiers(), realType->get_returnVals().front()->get_type()->clone() ) ) ); assign->get_args().push_back( deref ); addAdapterParams( adapteeApp, arg, param, adapterType->get_parameters().end(), realParam, tyVars ); assign->get_args().push_back( adapteeApp ); bodyStmt = new ExprStmt( assign ); } else { // adapter for a function that returns a monomorphic value addAdapterParams( adapteeApp, arg, param, adapterType->get_parameters().end(), realParam, tyVars ); bodyStmt = new ReturnStmt( adapteeApp ); } // if CompoundStmt *adapterBody = new CompoundStmt(); adapterBody->get_kids().push_back( bodyStmt ); std::string adapterName = makeAdapterName( mangleName ); return new FunctionDecl( adapterName, Type::StorageClasses(), LinkageSpec::C, adapterType, adapterBody ); } void Pass1::passAdapters( ApplicationExpr * appExpr, FunctionType * functionType, const TyVarMap & exprTyVars ) { // collect a list of function types passed as parameters or implicit parameters (assertions) std::list< DeclarationWithType *> ¶mList = functionType->get_parameters(); std::list< FunctionType *> functions; for ( Type::ForallList::iterator tyVar = functionType->get_forall().begin(); tyVar != functionType->get_forall().end(); ++tyVar ) { for ( std::list< DeclarationWithType *>::iterator assert = (*tyVar)->get_assertions().begin(); assert != (*tyVar)->get_assertions().end(); ++assert ) { findFunction( (*assert)->get_type(), functions, exprTyVars, needsAdapter ); } // for } // for for ( std::list< DeclarationWithType *>::iterator arg = paramList.begin(); arg != paramList.end(); ++arg ) { findFunction( (*arg)->get_type(), functions, exprTyVars, needsAdapter ); } // for // parameter function types for which an appropriate adapter has been generated. we cannot use the types // after applying substitutions, since two different parameter types may be unified to the same type std::set< std::string > adaptersDone; for ( std::list< FunctionType *>::iterator funType = functions.begin(); funType != functions.end(); ++funType ) { FunctionType *originalFunction = (*funType)->clone(); FunctionType *realFunction = (*funType)->clone(); std::string mangleName = SymTab::Mangler::mangle( realFunction ); // only attempt to create an adapter or pass one as a parameter if we haven't already done so for this // pre-substitution parameter function type. if ( adaptersDone.find( mangleName ) == adaptersDone.end() ) { adaptersDone.insert( adaptersDone.begin(), mangleName ); // apply substitution to type variables to figure out what the adapter's type should look like assert( env ); env->apply( realFunction ); mangleName = SymTab::Mangler::mangle( realFunction ); mangleName += makePolyMonoSuffix( originalFunction, exprTyVars ); typedef ScopedMap< std::string, DeclarationWithType* >::iterator AdapterIter; AdapterIter adapter = adapters.find( mangleName ); if ( adapter == adapters.end() ) { // adapter has not been created yet in the current scope, so define it FunctionDecl *newAdapter = makeAdapter( *funType, realFunction, mangleName, exprTyVars ); std::pair< AdapterIter, bool > answer = adapters.insert( std::pair< std::string, DeclarationWithType *>( mangleName, newAdapter ) ); adapter = answer.first; stmtsToAddBefore.push_back( new DeclStmt( newAdapter ) ); } // if assert( adapter != adapters.end() ); // add the appropriate adapter as a parameter appExpr->get_args().push_front( new VariableExpr( adapter->second ) ); } // if } // for } // passAdapters Expression *makeIncrDecrExpr( ApplicationExpr *appExpr, Type *polyType, bool isIncr ) { NameExpr *opExpr; if ( isIncr ) { opExpr = new NameExpr( "?+=?" ); } else { opExpr = new NameExpr( "?-=?" ); } // if UntypedExpr *addAssign = new UntypedExpr( opExpr ); if ( AddressExpr *address = dynamic_cast< AddressExpr *>( appExpr->get_args().front() ) ) { addAssign->get_args().push_back( address->get_arg() ); } else { addAssign->get_args().push_back( appExpr->get_args().front() ); } // if addAssign->get_args().push_back( new NameExpr( sizeofName( mangleType( polyType ) ) ) ); addAssign->set_result( appExpr->get_result()->clone() ); if ( appExpr->get_env() ) { addAssign->set_env( appExpr->get_env() ); appExpr->set_env( 0 ); } // if appExpr->get_args().clear(); delete appExpr; return addAssign; } Expression *Pass1::handleIntrinsics( ApplicationExpr *appExpr ) { if ( VariableExpr *varExpr = dynamic_cast< VariableExpr *>( appExpr->function ) ) { if ( varExpr->var->linkage == LinkageSpec::Intrinsic ) { if ( varExpr->var->name == "?[?]" ) { assert( appExpr->result ); assert( appExpr->get_args().size() == 2 ); Type *baseType1 = isPolyPtr( appExpr->args.front()->result, scopeTyVars, env ); Type *baseType2 = isPolyPtr( appExpr->args.back()->result, scopeTyVars, env ); assert( ! baseType1 || ! baseType2 ); // the arguments cannot both be polymorphic pointers UntypedExpr *ret = 0; if ( baseType1 || baseType2 ) { // one of the arguments is a polymorphic pointer ret = new UntypedExpr( new NameExpr( "?+?" ) ); } // if if ( baseType1 ) { UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) ); multiply->get_args().push_back( appExpr->get_args().back() ); multiply->get_args().push_back( new SizeofExpr( baseType1->clone() ) ); ret->get_args().push_back( appExpr->get_args().front() ); ret->get_args().push_back( multiply ); } else if ( baseType2 ) { UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) ); multiply->get_args().push_back( appExpr->get_args().front() ); multiply->get_args().push_back( new SizeofExpr( baseType2->clone() ) ); ret->get_args().push_back( multiply ); ret->get_args().push_back( appExpr->get_args().back() ); } // if if ( baseType1 || baseType2 ) { delete ret->get_result(); ret->set_result( appExpr->get_result()->clone() ); if ( appExpr->get_env() ) { ret->set_env( appExpr->get_env() ); appExpr->set_env( 0 ); } // if appExpr->get_args().clear(); delete appExpr; return ret; } // if } else if ( varExpr->get_var()->get_name() == "*?" ) { assert( appExpr->result ); assert( ! appExpr->get_args().empty() ); if ( isPolyType( appExpr->get_result(), scopeTyVars, env ) ) { // remove dereference from polymorphic types since they are boxed. Expression *ret = appExpr->get_args().front(); // fix expr type to remove pointer delete ret->get_result(); ret->set_result( appExpr->get_result()->clone() ); if ( appExpr->get_env() ) { ret->set_env( appExpr->get_env() ); appExpr->set_env( 0 ); } // if appExpr->get_args().clear(); delete appExpr; return ret; } // if } else if ( varExpr->get_var()->get_name() == "?++" || varExpr->get_var()->get_name() == "?--" ) { assert( appExpr->result ); assert( appExpr->get_args().size() == 1 ); if ( Type *baseType = isPolyPtr( appExpr->get_result(), scopeTyVars, env ) ) { Type *tempType = appExpr->get_result()->clone(); if ( env ) { env->apply( tempType ); } // if ObjectDecl *newObj = makeTemporary( tempType ); VariableExpr *tempExpr = new VariableExpr( newObj ); UntypedExpr *assignExpr = new UntypedExpr( new NameExpr( "?=?" ) ); assignExpr->get_args().push_back( tempExpr->clone() ); if ( AddressExpr *address = dynamic_cast< AddressExpr *>( appExpr->get_args().front() ) ) { assignExpr->get_args().push_back( address->get_arg()->clone() ); } else { assignExpr->get_args().push_back( appExpr->get_args().front()->clone() ); } // if CommaExpr *firstComma = new CommaExpr( assignExpr, makeIncrDecrExpr( appExpr, baseType, varExpr->get_var()->get_name() == "?++" ) ); return new CommaExpr( firstComma, tempExpr ); } // if } else if ( varExpr->get_var()->get_name() == "++?" || varExpr->get_var()->get_name() == "--?" ) { assert( appExpr->result ); assert( appExpr->get_args().size() == 1 ); if ( Type *baseType = isPolyPtr( appExpr->get_result(), scopeTyVars, env ) ) { return makeIncrDecrExpr( appExpr, baseType, varExpr->get_var()->get_name() == "++?" ); } // if } else if ( varExpr->get_var()->get_name() == "?+?" || varExpr->get_var()->get_name() == "?-?" ) { assert( appExpr->result ); assert( appExpr->get_args().size() == 2 ); Type *baseType1 = isPolyPtr( appExpr->get_args().front()->get_result(), scopeTyVars, env ); Type *baseType2 = isPolyPtr( appExpr->get_args().back()->get_result(), scopeTyVars, env ); if ( baseType1 && baseType2 ) { UntypedExpr *divide = new UntypedExpr( new NameExpr( "?/?" ) ); divide->get_args().push_back( appExpr ); divide->get_args().push_back( new SizeofExpr( baseType1->clone() ) ); divide->set_result( appExpr->get_result()->clone() ); if ( appExpr->get_env() ) { divide->set_env( appExpr->get_env() ); appExpr->set_env( 0 ); } // if return divide; } else if ( baseType1 ) { UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) ); multiply->get_args().push_back( appExpr->get_args().back() ); multiply->get_args().push_back( new SizeofExpr( baseType1->clone() ) ); appExpr->get_args().back() = multiply; } else if ( baseType2 ) { UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) ); multiply->get_args().push_back( appExpr->get_args().front() ); multiply->get_args().push_back( new SizeofExpr( baseType2->clone() ) ); appExpr->get_args().front() = multiply; } // if } else if ( varExpr->get_var()->get_name() == "?+=?" || varExpr->get_var()->get_name() == "?-=?" ) { assert( appExpr->result ); assert( appExpr->get_args().size() == 2 ); Type *baseType = isPolyPtr( appExpr->get_result(), scopeTyVars, env ); if ( baseType ) { UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) ); multiply->get_args().push_back( appExpr->get_args().back() ); multiply->get_args().push_back( new SizeofExpr( baseType->clone() ) ); appExpr->get_args().back() = multiply; } // if } // if return appExpr; } // if } // if return 0; } Expression *Pass1::postmutate( ApplicationExpr *appExpr ) { // std::cerr << "mutate appExpr: " << InitTweak::getFunctionName( appExpr ) << std::endl; // for ( TyVarMap::iterator i = scopeTyVars.begin(); i != scopeTyVars.end(); ++i ) { // std::cerr << i->first << " "; // } // std::cerr << "\n"; assert( appExpr->function->result ); FunctionType * function = getFunctionType( appExpr->function->result ); assertf( function, "ApplicationExpr has non-function type: %s", toString( appExpr->function->result ).c_str() ); if ( Expression *newExpr = handleIntrinsics( appExpr ) ) { return newExpr; } // if Expression *ret = appExpr; std::list< Expression *>::iterator arg = appExpr->get_args().begin(); std::list< Expression *>::iterator paramBegin = appExpr->get_args().begin(); TyVarMap exprTyVars( TypeDecl::Data{} ); makeTyVarMap( function, exprTyVars ); // xxx - should this take into account the variables already bound in scopeTyVars (i.e. remove them from exprTyVars?) ReferenceToType *dynRetType = isDynRet( function, exprTyVars ); // std::cerr << function << std::endl; // std::cerr << "scopeTyVars: "; // printTyVarMap( std::cerr, scopeTyVars ); // std::cerr << "exprTyVars: "; // printTyVarMap( std::cerr, exprTyVars ); // std::cerr << "env: " << *env << std::endl; // std::cerr << needsAdapter( function, scopeTyVars ) << ! needsAdapter( function, exprTyVars) << std::endl; // NOTE: addDynRetParam needs to know the actual (generated) return type so it can make a temp variable, so pass the result type from the appExpr // passTypeVars needs to know the program-text return type (i.e. the distinction between _conc_T30 and T3(int)) // concRetType may not be a good name in one or both of these places. A more appropriate name change is welcome. if ( dynRetType ) { // std::cerr << "dynRetType: " << dynRetType << std::endl; Type *concRetType = appExpr->get_result()->isVoid() ? nullptr : appExpr->get_result(); ret = addDynRetParam( appExpr, concRetType, arg ); // xxx - used to use dynRetType instead of concRetType } else if ( needsAdapter( function, scopeTyVars ) && ! needsAdapter( function, exprTyVars) ) { // xxx - exprTyVars is used above...? // xxx - the ! needsAdapter check may be incorrect. It seems there is some situation where an adapter is applied where it shouldn't be, and this fixes it for some cases. More investigation is needed. // std::cerr << "needs adapter: "; // printTyVarMap( std::cerr, scopeTyVars ); // std::cerr << *env << std::endl; // change the application so it calls the adapter rather than the passed function ret = applyAdapter( appExpr, function, arg, scopeTyVars ); } // if arg = appExpr->get_args().begin(); Type *concRetType = replaceWithConcrete( appExpr, dynRetType ); passTypeVars( appExpr, concRetType, arg, exprTyVars ); // xxx - used to use dynRetType instead of concRetType; this changed so that the correct type paramaters are passed for return types (it should be the concrete type's parameters, not the formal type's) addInferredParams( appExpr, function, arg, exprTyVars ); arg = paramBegin; boxParams( appExpr, function, arg, exprTyVars ); passAdapters( appExpr, function, exprTyVars ); return ret; } Expression * Pass1::postmutate( UntypedExpr *expr ) { if ( expr->result && isPolyType( expr->result, scopeTyVars, env ) ) { if ( NameExpr *name = dynamic_cast< NameExpr *>( expr->function ) ) { if ( name->name == "*?" ) { Expression *ret = expr->args.front(); expr->args.clear(); delete expr; return ret; } // if } // if } // if return expr; } void Pass1::premutate( AddressExpr * ) { visit_children = false; } Expression * Pass1::postmutate( AddressExpr * addrExpr ) { assert( addrExpr->arg->result && ! addrExpr->arg->result->isVoid() ); bool needs = false; if ( UntypedExpr *expr = dynamic_cast< UntypedExpr *>( addrExpr->arg ) ) { if ( expr->result && isPolyType( expr->result, scopeTyVars, env ) ) { if ( NameExpr *name = dynamic_cast< NameExpr *>( expr->function ) ) { if ( name->name == "*?" ) { if ( ApplicationExpr * appExpr = dynamic_cast< ApplicationExpr * >( expr->args.front() ) ) { assert( appExpr->function->result ); FunctionType *function = getFunctionType( appExpr->function->result ); assert( function ); needs = needsAdapter( function, scopeTyVars ); } // if } // if } // if } // if } // if // isPolyType check needs to happen before mutating addrExpr arg, so pull it forward // out of the if condition. addrExpr->arg = addrExpr->arg->acceptMutator( *visitor ); // ... but must happen after mutate, since argument might change (e.g. intrinsic *?, ?[?]) - re-evaluate above comment bool polytype = isPolyType( addrExpr->arg->result, scopeTyVars, env ); if ( polytype || needs ) { Expression *ret = addrExpr->arg; delete ret->result; ret->result = addrExpr->result->clone(); addrExpr->arg = nullptr; delete addrExpr; return ret; } else { return addrExpr; } // if } void Pass1::premutate( ReturnStmt *returnStmt ) { if ( retval && returnStmt->expr ) { assert( returnStmt->expr->result && ! returnStmt->expr->result->isVoid() ); delete returnStmt->expr; returnStmt->expr = nullptr; } // if } void Pass1::premutate( PointerType *pointerType ) { GuardScope( scopeTyVars ); makeTyVarMap( pointerType, scopeTyVars ); } void Pass1::premutate( FunctionType *functionType ) { GuardScope( scopeTyVars ); makeTyVarMap( functionType, scopeTyVars ); } void Pass1::beginScope() { adapters.beginScope(); } void Pass1::endScope() { adapters.endScope(); } ////////////////////////////////////////// Pass2 //////////////////////////////////////////////////// void Pass2::addAdapters( FunctionType *functionType ) { std::list< DeclarationWithType *> ¶mList = functionType->parameters; std::list< FunctionType *> functions; for ( std::list< DeclarationWithType *>::iterator arg = paramList.begin(); arg != paramList.end(); ++arg ) { Type *orig = (*arg)->get_type(); findAndReplaceFunction( orig, functions, scopeTyVars, needsAdapter ); (*arg)->set_type( orig ); } std::set< std::string > adaptersDone; for ( std::list< FunctionType *>::iterator funType = functions.begin(); funType != functions.end(); ++funType ) { std::string mangleName = mangleAdapterName( *funType, scopeTyVars ); if ( adaptersDone.find( mangleName ) == adaptersDone.end() ) { std::string adapterName = makeAdapterName( mangleName ); // adapter may not be used in body, pass along with unused attribute. paramList.push_front( new ObjectDecl( adapterName, Type::StorageClasses(), LinkageSpec::C, 0, new PointerType( Type::Qualifiers(), makeAdapterType( *funType, scopeTyVars ) ), 0, { new Attribute( "unused" ) } ) ); adaptersDone.insert( adaptersDone.begin(), mangleName ); } } // deleteAll( functions ); } DeclarationWithType * Pass2::postmutate( FunctionDecl *functionDecl ) { FunctionType * ftype = functionDecl->type; if ( ! ftype->returnVals.empty() && functionDecl->statements ) { if ( ! isPrefix( functionDecl->name, "_thunk" ) && ! isPrefix( functionDecl->name, "_adapter" ) ) { // xxx - remove check for prefix once thunks properly use ctor/dtors assert( ftype->returnVals.size() == 1 ); DeclarationWithType * retval = ftype->returnVals.front(); if ( retval->name == "" ) { retval->name = "_retval"; } functionDecl->statements->kids.push_front( new DeclStmt( retval ) ); DeclarationWithType * newRet = retval->clone(); // for ownership purposes ftype->returnVals.front() = newRet; } } // errors should have been caught by this point, remove initializers from parameters to allow correct codegen of default arguments for ( Declaration * param : functionDecl->type->parameters ) { if ( ObjectDecl * obj = dynamic_cast< ObjectDecl * >( param ) ) { delete obj->init; obj->init = nullptr; } } return functionDecl; } void Pass2::premutate( StructDecl * ) { // prevent tyVars from leaking into containing scope GuardScope( scopeTyVars ); } void Pass2::premutate( UnionDecl * ) { // prevent tyVars from leaking into containing scope GuardScope( scopeTyVars ); } void Pass2::premutate( TraitDecl * ) { // prevent tyVars from leaking into containing scope GuardScope( scopeTyVars ); } void Pass2::premutate( TypeDecl *typeDecl ) { addToTyVarMap( typeDecl, scopeTyVars ); } void Pass2::premutate( PointerType *pointerType ) { GuardScope( scopeTyVars ); makeTyVarMap( pointerType, scopeTyVars ); } void Pass2::premutate( FunctionType *funcType ) { GuardScope( scopeTyVars ); makeTyVarMap( funcType, scopeTyVars ); // move polymorphic return type to parameter list if ( isDynRet( funcType ) ) { ObjectDecl *ret = strict_dynamic_cast< ObjectDecl* >( funcType->get_returnVals().front() ); ret->set_type( new PointerType( Type::Qualifiers(), ret->get_type() ) ); funcType->get_parameters().push_front( ret ); funcType->get_returnVals().pop_front(); ret->set_init( nullptr ); // xxx - memory leak? } // add size/align and assertions for type parameters to parameter list std::list< DeclarationWithType *>::iterator last = funcType->get_parameters().begin(); std::list< DeclarationWithType *> inferredParams; // size/align/offset parameters may not be used in body, pass along with unused attribute. ObjectDecl newObj( "", Type::StorageClasses(), LinkageSpec::C, 0, new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ), 0, { new Attribute( "unused" ) } ); ObjectDecl newPtr( "", Type::StorageClasses(), LinkageSpec::C, 0, new PointerType( Type::Qualifiers(), new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ) ), 0 ); for ( Type::ForallList::const_iterator tyParm = funcType->get_forall().begin(); tyParm != funcType->get_forall().end(); ++tyParm ) { ObjectDecl *sizeParm, *alignParm; // add all size and alignment parameters to parameter list if ( (*tyParm)->isComplete() ) { TypeInstType parmType( Type::Qualifiers(), (*tyParm)->get_name(), *tyParm ); std::string parmName = mangleType( &parmType ); sizeParm = newObj.clone(); sizeParm->set_name( sizeofName( parmName ) ); last = funcType->get_parameters().insert( last, sizeParm ); ++last; alignParm = newObj.clone(); alignParm->set_name( alignofName( parmName ) ); last = funcType->get_parameters().insert( last, alignParm ); ++last; } // move all assertions into parameter list for ( std::list< DeclarationWithType *>::iterator assert = (*tyParm)->get_assertions().begin(); assert != (*tyParm)->get_assertions().end(); ++assert ) { // assertion parameters may not be used in body, pass along with unused attribute. (*assert)->get_attributes().push_back( new Attribute( "unused" ) ); inferredParams.push_back( *assert ); } (*tyParm)->get_assertions().clear(); } // add size/align for generic parameter types to parameter list std::set< std::string > seenTypes; // sizeofName for generic types we've seen for ( std::list< DeclarationWithType* >::const_iterator fnParm = last; fnParm != funcType->get_parameters().end(); ++fnParm ) { Type *polyType = isPolyType( (*fnParm)->get_type(), scopeTyVars ); if ( polyType && ! dynamic_cast< TypeInstType* >( polyType ) ) { std::string typeName = mangleType( polyType ); if ( seenTypes.count( typeName ) ) continue; ObjectDecl *sizeParm, *alignParm, *offsetParm; sizeParm = newObj.clone(); sizeParm->set_name( sizeofName( typeName ) ); last = funcType->get_parameters().insert( last, sizeParm ); ++last; alignParm = newObj.clone(); alignParm->set_name( alignofName( typeName ) ); last = funcType->get_parameters().insert( last, alignParm ); ++last; if ( StructInstType *polyBaseStruct = dynamic_cast< StructInstType* >( polyType ) ) { // NOTE zero-length arrays are illegal in C, so empty structs have no offset array if ( ! polyBaseStruct->get_baseStruct()->get_members().empty() ) { offsetParm = newPtr.clone(); offsetParm->set_name( offsetofName( typeName ) ); last = funcType->get_parameters().insert( last, offsetParm ); ++last; } } seenTypes.insert( typeName ); } } // splice assertion parameters into parameter list funcType->get_parameters().splice( last, inferredParams ); addAdapters( funcType ); } ////////////////////////////////////////// PolyGenericCalculator //////////////////////////////////////////////////// PolyGenericCalculator::PolyGenericCalculator() : knownLayouts(), knownOffsets(), bufNamer( "_buf" ) {} void PolyGenericCalculator::beginTypeScope( Type *ty ) { GuardScope( scopeTyVars ); makeTyVarMap( ty, scopeTyVars ); } void PolyGenericCalculator::beginGenericScope() { GuardScope( *this ); } void PolyGenericCalculator::premutate( ObjectDecl *objectDecl ) { beginTypeScope( objectDecl->get_type() ); } void PolyGenericCalculator::premutate( FunctionDecl *functionDecl ) { beginGenericScope(); beginTypeScope( functionDecl->get_functionType() ); } void PolyGenericCalculator::premutate( TypedefDecl *typedefDecl ) { assert(false); beginTypeScope( typedefDecl->get_base() ); } void PolyGenericCalculator::premutate( TypeDecl * typeDecl ) { addToTyVarMap( typeDecl, scopeTyVars ); } Declaration * PolyGenericCalculator::postmutate( TypeDecl *typeDecl ) { if ( Type * base = typeDecl->base ) { // add size/align variables for opaque type declarations TypeInstType inst( Type::Qualifiers(), typeDecl->name, typeDecl ); std::string typeName = mangleType( &inst ); Type *layoutType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ); ObjectDecl * sizeDecl = ObjectDecl::newObject( sizeofName( typeName ), layoutType, new SingleInit( new SizeofExpr( base->clone() ) ) ); ObjectDecl * alignDecl = ObjectDecl::newObject( alignofName( typeName ), layoutType->clone(), new SingleInit( new AlignofExpr( base->clone() ) ) ); // ensure that the initializing sizeof/alignof exprs are properly mutated sizeDecl->acceptMutator( *visitor ); alignDecl->acceptMutator( *visitor ); // can't use makeVar, because it inserts into stmtsToAdd and TypeDecls can occur at global scope declsToAddAfter.push_back( alignDecl ); // replace with sizeDecl return sizeDecl; } return typeDecl; } void PolyGenericCalculator::premutate( PointerType *pointerType ) { beginTypeScope( pointerType ); } void PolyGenericCalculator::premutate( FunctionType *funcType ) { beginTypeScope( funcType ); // make sure that any type information passed into the function is accounted for for ( std::list< DeclarationWithType* >::const_iterator fnParm = funcType->get_parameters().begin(); fnParm != funcType->get_parameters().end(); ++fnParm ) { // condition here duplicates that in Pass2::mutate( FunctionType* ) Type *polyType = isPolyType( (*fnParm)->get_type(), scopeTyVars ); if ( polyType && ! dynamic_cast< TypeInstType* >( polyType ) ) { knownLayouts.insert( mangleType( polyType ) ); } } } /// converts polymorphic type T into a suitable monomorphic representation, currently: __attribute__((aligned(8)) char[size_T] Type * polyToMonoType( Type * declType ) { Type * charType = new BasicType( Type::Qualifiers(), BasicType::Kind::Char); Expression * size = new NameExpr( sizeofName( mangleType(declType) ) ); Attribute * aligned = new Attribute( "aligned", std::list{ new ConstantExpr( Constant::from_int(8) ) } ); return new ArrayType( Type::Qualifiers(), charType, size, true, false, std::list{ aligned } ); } void PolyGenericCalculator::mutateMembers( AggregateDecl * aggrDecl ) { std::set< std::string > genericParams; for ( TypeDecl * td : aggrDecl->parameters ) { genericParams.insert( td->name ); } for ( Declaration * decl : aggrDecl->members ) { if ( ObjectDecl * field = dynamic_cast< ObjectDecl * >( decl ) ) { Type * ty = replaceTypeInst( field->type, env ); if ( TypeInstType *typeInst = dynamic_cast< TypeInstType* >( ty ) ) { // do not try to monomorphize generic parameters if ( scopeTyVars.find( typeInst->get_name() ) != scopeTyVars.end() && ! genericParams.count( typeInst->name ) ) { // polymorphic aggregate members should be converted into monomorphic members. // Using char[size_T] here respects the expected sizing rules of an aggregate type. Type * newType = polyToMonoType( field->type ); delete field->type; field->type = newType; } } } } } void PolyGenericCalculator::premutate( StructDecl * structDecl ) { mutateMembers( structDecl ); } void PolyGenericCalculator::premutate( UnionDecl * unionDecl ) { mutateMembers( unionDecl ); } void PolyGenericCalculator::premutate( DeclStmt *declStmt ) { if ( ObjectDecl *objectDecl = dynamic_cast< ObjectDecl *>( declStmt->get_decl() ) ) { if ( findGeneric( objectDecl->get_type() ) ) { // change initialization of a polymorphic value object to allocate via a VLA // (alloca was previously used, but can't be safely used in loops) ObjectDecl *newBuf = ObjectDecl::newObject( bufNamer.newName(), polyToMonoType( objectDecl->type ), nullptr ); stmtsToAddBefore.push_back( new DeclStmt( newBuf ) ); delete objectDecl->get_init(); objectDecl->set_init( new SingleInit( new VariableExpr( newBuf ) ) ); } } } /// Finds the member in the base list that matches the given declaration; returns its index, or -1 if not present long findMember( DeclarationWithType *memberDecl, std::list< Declaration* > &baseDecls ) { long i = 0; for(std::list< Declaration* >::const_iterator decl = baseDecls.begin(); decl != baseDecls.end(); ++decl, ++i ) { if ( memberDecl->get_name() != (*decl)->get_name() ) continue; if ( DeclarationWithType *declWithType = dynamic_cast< DeclarationWithType* >( *decl ) ) { if ( memberDecl->get_mangleName().empty() || declWithType->get_mangleName().empty() || memberDecl->get_mangleName() == declWithType->get_mangleName() ) return i; else continue; } else return i; } return -1; } /// Returns an index expression into the offset array for a type Expression *makeOffsetIndex( Type *objectType, long i ) { ConstantExpr *fieldIndex = new ConstantExpr( Constant::from_ulong( i ) ); UntypedExpr *fieldOffset = new UntypedExpr( new NameExpr( "?[?]" ) ); fieldOffset->get_args().push_back( new NameExpr( offsetofName( mangleType( objectType ) ) ) ); fieldOffset->get_args().push_back( fieldIndex ); return fieldOffset; } Expression *PolyGenericCalculator::postmutate( MemberExpr *memberExpr ) { // only mutate member expressions for polymorphic types int tyDepth; Type *objectType = hasPolyBase( memberExpr->aggregate->result, scopeTyVars, &tyDepth ); if ( ! objectType ) return memberExpr; findGeneric( objectType ); // ensure layout for this type is available // replace member expression with dynamically-computed layout expression Expression *newMemberExpr = nullptr; if ( StructInstType *structType = dynamic_cast< StructInstType* >( objectType ) ) { // look up offset index long i = findMember( memberExpr->member, structType->baseStruct->members ); if ( i == -1 ) return memberExpr; // replace member expression with pointer to base plus offset UntypedExpr *fieldLoc = new UntypedExpr( new NameExpr( "?+?" ) ); Expression * aggr = memberExpr->aggregate->clone(); delete aggr->env; // xxx - there's a problem with keeping the env for some reason, so for now just get rid of it aggr->env = nullptr; fieldLoc->get_args().push_back( aggr ); fieldLoc->get_args().push_back( makeOffsetIndex( objectType, i ) ); fieldLoc->set_result( memberExpr->result->clone() ); newMemberExpr = fieldLoc; } else if ( dynamic_cast< UnionInstType* >( objectType ) ) { // union members are all at offset zero, so just use the aggregate expr Expression * aggr = memberExpr->aggregate->clone(); delete aggr->env; // xxx - there's a problem with keeping the env for some reason, so for now just get rid of it aggr->env= nullptr; newMemberExpr = aggr; newMemberExpr->result = memberExpr->result->clone(); } else return memberExpr; assert( newMemberExpr ); // Must apply the generic substitution to the member type to handle cases where the member is a generic parameter substituted by a known concrete type, e.g. // forall(otype T) struct Box { T x; } // forall(otype T) f() { // Box(T *) b; b.x; // } // TODO: memberExpr->result should be exactly memberExpr->member->get_type() after substitution, so it doesn't seem like it should be necessary to apply the substitution manually. For some reason this is not currently the case. This requires more investigation. Type *memberType = memberExpr->member->get_type()->clone(); TypeSubstitution sub = objectType->genericSubstitution(); sub.apply( memberType ); if ( ! isPolyType( memberType, scopeTyVars ) ) { // Not all members of a polymorphic type are themselves of polymorphic type; in this case the member expression should be wrapped and dereferenced to form an lvalue CastExpr *ptrCastExpr = new CastExpr( newMemberExpr, new PointerType( Type::Qualifiers(), memberType->clone() ) ); UntypedExpr *derefExpr = UntypedExpr::createDeref( ptrCastExpr ); newMemberExpr = derefExpr; } delete memberType; delete memberExpr; return newMemberExpr; } void PolyGenericCalculator::premutate( AddressExpr * addrExpr ) { GuardValue( addrMember ); // is the argument a MemberExpr before mutating? addrMember = dynamic_cast< MemberExpr * >( addrExpr->arg ); } Expression * PolyGenericCalculator::postmutate( AddressExpr * addrExpr ) { if ( addrMember && addrMember != addrExpr->arg ) { // arg was a MemberExpr and has been mutated if ( UntypedExpr * untyped = dynamic_cast< UntypedExpr * >( addrExpr->arg ) ) { if ( InitTweak::getFunctionName( untyped ) == "?+?" ) { // MemberExpr was converted to pointer+offset, and it is not valid C to take the address of an addition, so strip the address-of // TODO: should addrExpr->arg->result be changed to addrExpr->result? Expression * ret = addrExpr->arg; addrExpr->arg = nullptr; std::swap( addrExpr->env, ret->env ); delete addrExpr; return ret; } } } return addrExpr; } ObjectDecl *PolyGenericCalculator::makeVar( const std::string &name, Type *type, Initializer *init ) { ObjectDecl *newObj = new ObjectDecl( name, Type::StorageClasses(), LinkageSpec::C, nullptr, type, init ); stmtsToAddBefore.push_back( new DeclStmt( newObj ) ); return newObj; } void PolyGenericCalculator::addOtypeParamsToLayoutCall( UntypedExpr *layoutCall, const std::list< Type* > &otypeParams ) { for ( std::list< Type* >::const_iterator param = otypeParams.begin(); param != otypeParams.end(); ++param ) { if ( findGeneric( *param ) ) { // push size/align vars for a generic parameter back std::string paramName = mangleType( *param ); layoutCall->get_args().push_back( new NameExpr( sizeofName( paramName ) ) ); layoutCall->get_args().push_back( new NameExpr( alignofName( paramName ) ) ); } else { layoutCall->get_args().push_back( new SizeofExpr( (*param)->clone() ) ); layoutCall->get_args().push_back( new AlignofExpr( (*param)->clone() ) ); } } } /// returns true if any of the otype parameters have a dynamic layout and puts all otype parameters in the output list bool findGenericParams( std::list< TypeDecl* > &baseParams, std::list< Expression* > &typeParams, std::list< Type* > &out ) { bool hasDynamicLayout = false; std::list< TypeDecl* >::const_iterator baseParam = baseParams.begin(); std::list< Expression* >::const_iterator typeParam = typeParams.begin(); for ( ; baseParam != baseParams.end() && typeParam != typeParams.end(); ++baseParam, ++typeParam ) { // skip non-otype parameters if ( ! (*baseParam)->isComplete() ) continue; TypeExpr *typeExpr = dynamic_cast< TypeExpr* >( *typeParam ); assert( typeExpr && "all otype parameters should be type expressions" ); Type *type = typeExpr->get_type(); out.push_back( type ); if ( isPolyType( type ) ) hasDynamicLayout = true; } assert( baseParam == baseParams.end() && typeParam == typeParams.end() ); return hasDynamicLayout; } bool PolyGenericCalculator::findGeneric( Type *ty ) { ty = replaceTypeInst( ty, env ); if ( TypeInstType *typeInst = dynamic_cast< TypeInstType* >( ty ) ) { if ( scopeTyVars.find( typeInst->get_name() ) != scopeTyVars.end() ) { // NOTE assumes here that getting put in the scopeTyVars included having the layout variables set return true; } return false; } else if ( StructInstType *structTy = dynamic_cast< StructInstType* >( ty ) ) { // check if this type already has a layout generated for it std::string typeName = mangleType( ty ); if ( knownLayouts.find( typeName ) != knownLayouts.end() ) return true; // check if any of the type parameters have dynamic layout; if none do, this type is (or will be) monomorphized std::list< Type* > otypeParams; if ( ! findGenericParams( *structTy->get_baseParameters(), structTy->get_parameters(), otypeParams ) ) return false; // insert local variables for layout and generate call to layout function knownLayouts.insert( typeName ); // done early so as not to interfere with the later addition of parameters to the layout call Type *layoutType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ); int n_members = structTy->get_baseStruct()->get_members().size(); if ( n_members == 0 ) { // all empty structs have the same layout - size 1, align 1 makeVar( sizeofName( typeName ), layoutType, new SingleInit( new ConstantExpr( Constant::from_ulong( (unsigned long)1 ) ) ) ); makeVar( alignofName( typeName ), layoutType->clone(), new SingleInit( new ConstantExpr( Constant::from_ulong( (unsigned long)1 ) ) ) ); // NOTE zero-length arrays are forbidden in C, so empty structs have no offsetof array } else { ObjectDecl *sizeVar = makeVar( sizeofName( typeName ), layoutType ); ObjectDecl *alignVar = makeVar( alignofName( typeName ), layoutType->clone() ); ObjectDecl *offsetVar = makeVar( offsetofName( typeName ), new ArrayType( Type::Qualifiers(), layoutType->clone(), new ConstantExpr( Constant::from_int( n_members ) ), false, false ) ); // generate call to layout function UntypedExpr *layoutCall = new UntypedExpr( new NameExpr( layoutofName( structTy->get_baseStruct() ) ) ); layoutCall->get_args().push_back( new AddressExpr( new VariableExpr( sizeVar ) ) ); layoutCall->get_args().push_back( new AddressExpr( new VariableExpr( alignVar ) ) ); layoutCall->get_args().push_back( new VariableExpr( offsetVar ) ); addOtypeParamsToLayoutCall( layoutCall, otypeParams ); stmtsToAddBefore.push_back( new ExprStmt( layoutCall ) ); } return true; } else if ( UnionInstType *unionTy = dynamic_cast< UnionInstType* >( ty ) ) { // check if this type already has a layout generated for it std::string typeName = mangleType( ty ); if ( knownLayouts.find( typeName ) != knownLayouts.end() ) return true; // check if any of the type parameters have dynamic layout; if none do, this type is (or will be) monomorphized std::list< Type* > otypeParams; if ( ! findGenericParams( *unionTy->get_baseParameters(), unionTy->get_parameters(), otypeParams ) ) return false; // insert local variables for layout and generate call to layout function knownLayouts.insert( typeName ); // done early so as not to interfere with the later addition of parameters to the layout call Type *layoutType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ); ObjectDecl *sizeVar = makeVar( sizeofName( typeName ), layoutType ); ObjectDecl *alignVar = makeVar( alignofName( typeName ), layoutType->clone() ); // generate call to layout function UntypedExpr *layoutCall = new UntypedExpr( new NameExpr( layoutofName( unionTy->get_baseUnion() ) ) ); layoutCall->get_args().push_back( new AddressExpr( new VariableExpr( sizeVar ) ) ); layoutCall->get_args().push_back( new AddressExpr( new VariableExpr( alignVar ) ) ); addOtypeParamsToLayoutCall( layoutCall, otypeParams ); stmtsToAddBefore.push_back( new ExprStmt( layoutCall ) ); return true; } return false; } Expression * PolyGenericCalculator::genSizeof( Type* ty ) { if ( ArrayType * aty = dynamic_cast(ty) ) { // generate calculated size for possibly generic array Expression * sizeofBase = genSizeof( aty->get_base() ); if ( ! sizeofBase ) return nullptr; Expression * dim = aty->get_dimension(); aty->set_dimension( nullptr ); return makeOp( "?*?", sizeofBase, dim ); } else if ( findGeneric( ty ) ) { // generate calculated size for generic type return new NameExpr( sizeofName( mangleType( ty ) ) ); } else return nullptr; } Expression *PolyGenericCalculator::postmutate( SizeofExpr *sizeofExpr ) { Type *ty = sizeofExpr->get_isType() ? sizeofExpr->get_type() : sizeofExpr->get_expr()->get_result(); Expression * gen = genSizeof( ty ); if ( gen ) { delete sizeofExpr; return gen; } else return sizeofExpr; } Expression *PolyGenericCalculator::postmutate( AlignofExpr *alignofExpr ) { Type *ty = alignofExpr->get_isType() ? alignofExpr->get_type() : alignofExpr->get_expr()->get_result(); if ( findGeneric( ty ) ) { Expression *ret = new NameExpr( alignofName( mangleType( ty ) ) ); delete alignofExpr; return ret; } return alignofExpr; } Expression *PolyGenericCalculator::postmutate( OffsetofExpr *offsetofExpr ) { // only mutate expressions for polymorphic structs/unions Type *ty = offsetofExpr->get_type(); if ( ! findGeneric( ty ) ) return offsetofExpr; if ( StructInstType *structType = dynamic_cast< StructInstType* >( ty ) ) { // replace offsetof expression by index into offset array long i = findMember( offsetofExpr->get_member(), structType->get_baseStruct()->get_members() ); if ( i == -1 ) return offsetofExpr; Expression *offsetInd = makeOffsetIndex( ty, i ); delete offsetofExpr; return offsetInd; } else if ( dynamic_cast< UnionInstType* >( ty ) ) { // all union members are at offset zero delete offsetofExpr; return new ConstantExpr( Constant::from_ulong( 0 ) ); } else return offsetofExpr; } Expression *PolyGenericCalculator::postmutate( OffsetPackExpr *offsetPackExpr ) { StructInstType *ty = offsetPackExpr->get_type(); Expression *ret = 0; if ( findGeneric( ty ) ) { // pull offset back from generated type information ret = new NameExpr( offsetofName( mangleType( ty ) ) ); } else { std::string offsetName = offsetofName( mangleType( ty ) ); if ( knownOffsets.find( offsetName ) != knownOffsets.end() ) { // use the already-generated offsets for this type ret = new NameExpr( offsetName ); } else { knownOffsets.insert( offsetName ); std::list< Declaration* > &baseMembers = ty->get_baseStruct()->get_members(); Type *offsetType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ); // build initializer list for offset array std::list< Initializer* > inits; for ( std::list< Declaration* >::const_iterator member = baseMembers.begin(); member != baseMembers.end(); ++member ) { if ( DeclarationWithType *memberDecl = dynamic_cast< DeclarationWithType* >( *member ) ) { inits.push_back( new SingleInit( new OffsetofExpr( ty->clone(), memberDecl ) ) ); } else { assertf( false, "Requesting offset of Non-DWT member: %s", toString( *member ).c_str() ); } } // build the offset array and replace the pack with a reference to it ObjectDecl *offsetArray = makeVar( offsetName, new ArrayType( Type::Qualifiers(), offsetType, new ConstantExpr( Constant::from_ulong( baseMembers.size() ) ), false, false ), new ListInit( inits ) ); ret = new VariableExpr( offsetArray ); } } delete offsetPackExpr; return ret; } void PolyGenericCalculator::beginScope() { knownLayouts.beginScope(); knownOffsets.beginScope(); } void PolyGenericCalculator::endScope() { knownLayouts.endScope(); knownOffsets.endScope(); } ////////////////////////////////////////// Pass3 //////////////////////////////////////////////////// template< typename DeclClass > void Pass3::handleDecl( DeclClass * decl, Type * type ) { GuardScope( scopeTyVars ); makeTyVarMap( type, scopeTyVars ); ScrubTyVars::scrubAll( decl ); } void Pass3::premutate( ObjectDecl * objectDecl ) { handleDecl( objectDecl, objectDecl->type ); } void Pass3::premutate( FunctionDecl * functionDecl ) { handleDecl( functionDecl, functionDecl->type ); } void Pass3::premutate( TypedefDecl * typedefDecl ) { handleDecl( typedefDecl, typedefDecl->base ); } /// Strips the members from a generic aggregate void stripGenericMembers(AggregateDecl * decl) { if ( ! decl->parameters.empty() ) decl->members.clear(); } void Pass3::premutate( StructDecl * structDecl ) { stripGenericMembers( structDecl ); } void Pass3::premutate( UnionDecl * unionDecl ) { stripGenericMembers( unionDecl ); } void Pass3::premutate( TypeDecl * typeDecl ) { addToTyVarMap( typeDecl, scopeTyVars ); } void Pass3::premutate( PointerType * pointerType ) { GuardScope( scopeTyVars ); makeTyVarMap( pointerType, scopeTyVars ); } void Pass3::premutate( FunctionType * functionType ) { GuardScope( scopeTyVars ); makeTyVarMap( functionType, scopeTyVars ); } } // anonymous namespace } // namespace GenPoly // Local Variables: // // tab-width: 4 // // mode: c++ // // compile-command: "make install" // // End: //