// // Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo // // The contents of this file are covered under the licence agreement in the // file "LICENCE" distributed with Cforall. // // DeclStats.cc -- // // Author : Aaron Moss // Created On : Wed Jan 31 16:40:00 2016 // Last Modified By : Aaron Moss // Last Modified On : Wed Jan 31 16:40:00 2016 // Update Count : 1 // #include "DeclStats.h" #include #include #include #include #include #include #include "Common/VectorMap.h" #include "GenPoly/GenPoly.h" #include "Parser/LinkageSpec.h" #include "SynTree/Declaration.h" #include "SynTree/Visitor.h" namespace CodeTools { class DeclStats : public Visitor { template static void sum(T& a, const T& b) { a += b; } static void sum(VectorMap& a, const VectorMap& b) { a.reserve( b.size() ); for ( unsigned i = 0; i < b.size(); ++i ) { a[i] += b[i]; } } template static void sum(std::map& a, const std::map& b) { for ( const auto& entry : b ) { a[ entry.first ] += entry.second; } } template static void sum(std::unordered_map& a, const std::unordered_map& b) { for ( const auto& entry : b ) { a[ entry.first ] += entry.second; } } struct ArgPackStats { VectorMap n; ///< Count of decls with each number of elements VectorMap n_basic; ///< Count of decls with each number of basic type elements VectorMap n_poly; ///< Count of decls with each number of polymorphic elements std::map p_basic; ///< Count of decls with each percentage of basic type elements std::map p_poly; ///< Count of decls with each percentage of polymorphic elements VectorMap n_types; ///< Count of decls with each number of distinct types in the pack /// Count of decls with each percentage of new types in lists. /// Types used in the parameter list that recur in the return list are not considered to be new. std::map p_new; ArgPackStats& operator+= (const ArgPackStats& o) { sum(n, o.n); sum(n_basic, o.n_basic); sum(n_poly, o.n_poly); sum(p_basic, o.p_basic); sum(p_poly, o.p_poly); sum(n_types, o.n_types); sum(p_new, o.p_new); return *this; } }; struct Stats { unsigned n_decls; ///< Total number of declarations /// Count of declarations with each number of assertion parameters VectorMap n_type_params; /// Count of declarations with each name std::unordered_map by_name; /// Count of uses of each basic type std::unordered_map basic_type_names; /// Count of uses of each non-basic type std::unordered_map compound_type_names; /// Count of decls using each basic type std::unordered_map basic_type_decls; /// Count of decls using each compound type std::unordered_map compound_type_decls; /// Stats for the parameter list ArgPackStats params; /// Stats for the return list ArgPackStats returns; /// Count of declarations with each number of assertions std::map n_assns; /// Stats for the assertions' parameters ArgPackStats assn_params; /// Stats for the assertions' return types ArgPackStats assn_returns; Stats() : n_decls(0), n_type_params(), by_name(), basic_type_names(), compound_type_names(), basic_type_decls(), compound_type_decls(), params(), returns(), n_assns(), assn_params(), assn_returns() {} public: Stats& operator+= (const Stats& o) { sum( n_decls, o.n_decls ); sum( n_type_params, o.n_type_params ); sum( by_name, o.by_name ); sum( basic_type_names, o.basic_type_names ); sum( compound_type_names, o.compound_type_names ); sum( basic_type_decls, o.basic_type_decls ); sum( compound_type_decls, o.compound_type_decls ); sum( params, o.params ); sum( returns, o.returns ); sum( n_assns, o.n_assns ); sum( assn_params, o.assn_params ); sum( assn_returns, o.assn_returns ); return *this; } }; Stats for_linkage[LinkageSpec::NoOfSpecs]; ///< Stores separate stats per linkage std::unordered_set seen_names; ///< Stores manglenames already seen to avoid double-counting Stats total; /// Count of expressions with (depth, fanout) std::map, unsigned> exprs_by_fanout_at_depth; /// Update arg pack stats based on a declaration list void analyze( Stats& stats, std::unordered_set& seen, ArgPackStats& pstats, std::list& decls ) { std::unordered_set types; unsigned n = 0; ///< number of args/returns unsigned n_basic = 0; ///< number of basic types unsigned n_poly = 0; ///< number of polymorphic types unsigned n_new = 0; ///< number of new types for ( auto decl : decls ) { Type* dt = decl->get_type(); n += dt->size(); std::stringstream ss; dt->print( ss ); types.insert( ss.str() ); bool this_new = seen.insert( ss.str() ).second; if ( this_new ) { ++n_new; } if ( dynamic_cast( dt ) ) { ++n_basic; ++stats.basic_type_names[ ss.str() ]; if ( this_new ) { ++stats.basic_type_decls[ ss.str() ]; } } else if ( GenPoly::hasPolyBase( dt ) ) { ++n_poly; } else { ++stats.compound_type_names[ ss.str() ]; if ( this_new ) { ++stats.compound_type_decls[ ss.str() ]; } } } ++pstats.n.at( n ); ++pstats.n_basic.at( n_basic ); ++pstats.n_poly.at( n_poly ); if ( n > 0 ) { ++pstats.p_basic[ n_basic*100/n ]; ++pstats.p_poly[ n_poly*100/n ]; ++pstats.p_new[ n_new*100/n ]; } ++pstats.n_types.at( types.size() ); } void analyzeFunc( FunctionType* fnTy, Stats& stats, ArgPackStats& params, ArgPackStats& returns ) { std::unordered_set seen; analyze( stats, seen, params, fnTy->get_parameters() ); analyze( stats, seen, returns, fnTy->get_returnVals() ); } void analyzeExpr( UntypedExpr *expr, unsigned depth ) { auto& args = expr->get_args(); unsigned fanout = args.size(); ++exprs_by_fanout_at_depth[ std::make_pair(depth, fanout) ]; for ( Expression* arg : args ) { if ( UntypedExpr *uearg = dynamic_cast(arg) ) { analyzeExpr( uearg, depth+1 ); } } } public: using Visitor::visit; virtual void visit( FunctionDecl *decl ) { // skip if already seen declaration for this function const std::string& mangleName = decl->get_mangleName().empty() ? decl->get_name() : decl->get_mangleName(); if ( ! seen_names.insert( mangleName ).second ) { maybeAccept( decl->get_statements(), *this ); return; } Stats& stats = for_linkage[ decl->get_linkage() ]; ++stats.n_decls; FunctionType* fnTy = decl->get_functionType(); const Type::ForallList& forall = fnTy->get_forall(); ++stats.n_type_params.at( forall.size() ); unsigned n_assns = 0; for ( TypeDecl* fdecl : forall ) { n_assns += fdecl->get_assertions().size(); for ( DeclarationWithType* assn : fdecl->get_assertions() ) { FunctionType *assnTy = 0; if ( ObjectDecl *assnObj = dynamic_cast(assn) ) { if ( PointerType *ptrTy = dynamic_cast(assnObj->get_type()) ) { assnTy = dynamic_cast(ptrTy->get_base()); } else assnTy = dynamic_cast(assnObj->get_type()); } else if ( FunctionDecl *assnDecl = dynamic_cast(assn) ) { assnTy = assnDecl->get_functionType(); } if ( assnTy ) analyzeFunc( assnTy, stats, stats.assn_params, stats.assn_returns ); } } ++stats.n_assns[ n_assns ]; ++stats.by_name[ decl->get_name() ]; analyzeFunc( fnTy, stats, stats.params, stats.returns ); // analyze expressions in decl statements maybeAccept( decl->get_statements(), *this ); } virtual void visit( UntypedExpr *expr ) { analyzeExpr( expr, 0 ); } private: template void printAll( const std::string& name, F extract ) { std::cout << "\"" << name << "\","; for ( const auto& stats : for_linkage ) { std::cout << "," << extract(stats); } std::cout << "," << extract(total) << std::endl; } template void printAllMap( const std::string& name, F extract ) { for ( const auto& entry : extract(total) ) { const auto& key = entry.first; std::cout << "\"" << name << "\"," << key; for ( const auto& stats : for_linkage ) { const auto& map = extract(stats); auto it = map.find( key ); if ( it == map.end() ) std::cout << ",0"; else std::cout << "," << it->second; } std::cout << "," << entry.second << std::endl; } } template void printAllHisto( const std::string& name, F extract ) { VectorMap histos[LinkageSpec::NoOfSpecs]; VectorMap thisto; for ( const auto& entry : extract(total) ) { ++thisto.at( entry.second ); } for ( unsigned i = 0; i < LinkageSpec::NoOfSpecs; ++i ) { // can't be a higher count in one of the sub-histograms than the total histos[i].reserve( thisto.size() ); for ( const auto& entry : extract(for_linkage[i]) ) { ++histos[i][entry.second]; } } for ( unsigned i = 0; i < thisto.size(); ++i ) { std::cout << "\"" << name << "\"," << i; for ( const auto& histo : histos ) { std::cout << "," << histo[i]; } std::cout << "," << thisto[i] << std::endl; } } template void printAllSparseHisto( const std::string& name, F extract ) { std::map histos[LinkageSpec::NoOfSpecs]; std::map thisto; for ( const auto& entry : extract(total) ) { ++thisto[ entry.second ]; } for ( unsigned i = 0; i < LinkageSpec::NoOfSpecs; ++i ) { for ( const auto& entry : extract(for_linkage[i]) ) { ++histos[i][entry.second]; } } for ( const auto& entry : thisto ) { const auto& key = entry.first; std::cout << "\"" << name << "\"," << key; for ( unsigned i = 0; i < LinkageSpec::NoOfSpecs; ++i ) { auto it = histos[i].find( key ); if ( it == histos[i].end() ) std::cout << ",0"; else std::cout << "," << it->second; } std::cout << "," << entry.second << std::endl; } } template void printAllPack( const std::string& name, F extract ) { printAllMap("n_basic_" + name, [&extract](const Stats& stats) { return extract(stats).n_basic; }); printAllMap("n_poly_" + name, [&extract](const Stats& stats) { return extract(stats).n_poly; }); printAllMap("n_" + name, [&extract](const Stats& stats) { return extract(stats).n; }); printAllMap("%_basic_" + name, [&extract](const Stats& stats) { return extract(stats).p_basic; }); printAllMap("%_poly_" + name, [&extract](const Stats& stats) { return extract(stats).p_poly; }); printAllMap("n_distinct_types_" + name, [&extract](const Stats& stats) { return extract(stats).n_types; }); printAllMap("%_new_types_in_" + name, [&extract](const Stats& stats) { return extract(stats).p_new; }); } void printPairMap( const std::string& name, const std::map, unsigned>& map ) { for ( const auto& entry : map ) { const auto& key = entry.first; std::cout << "\"" << name << "\"," << key.first << "," << key.second << "," << entry.second << std::endl; } } public: void print() { for ( auto& stats : for_linkage ) { total += stats; } std::cout << ",,\"intrinsic\",\"Cforall\",\"C\",\"autogen\",\"builtin\",\"TOTAL\"" << std::endl; printAllMap("n_type_params", [](const Stats& stats) { return stats.n_type_params; }); printAll("n_decls", [](const Stats& stats) { return stats.n_decls; }); printAll("unique_names", [](const Stats& stats) { return stats.by_name.size(); }); printAllSparseHisto("overloads", [](const Stats& stats) { return stats.by_name; }); printAll("basic_type_names", [](const Stats& stats) { return stats.basic_type_names.size(); }); printAllSparseHisto("basic_type_uses", [](const Stats& stats) { return stats.basic_type_names; }); printAllSparseHisto("decls_using_basic_type", [](const Stats& stats) { return stats.basic_type_decls; }); printAll("compound_type_names", [](const Stats& stats) { return stats.compound_type_names.size(); }); printAllSparseHisto("compound_type_uses", [](const Stats& stats) { return stats.compound_type_names; }); printAllSparseHisto("decls_using_compound_type", [](const Stats& stats) { return stats.compound_type_decls; }); printAllPack("params", [](const Stats& stats) { return stats.params; }); printAllPack("returns", [](const Stats& stats) { return stats.returns; }); printAllMap("n_assns", [](const Stats& stats) { return stats.n_assns; }); printAllPack("assn_params", [](const Stats& stats) { return stats.assn_params; }); printAllPack("assn_returns", [](const Stats& stats) { return stats.assn_returns; }); std::cout << std::endl; printPairMap("exprs_by_depth+fanout", exprs_by_fanout_at_depth); } }; void printDeclStats( std::list< Declaration * > &translationUnit ) { DeclStats stats; acceptAll( translationUnit, stats ); stats.print(); } } // namespace CodeTools // Local Variables: // // tab-width: 4 // // mode: c++ // // compile-command: "make install" // // End: //