// // Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo // // The contents of this file are covered under the licence agreement in the // file "LICENCE" distributed with Cforall. // // Type.hpp -- // // Author : Aaron B. Moss // Created On : Thu May 9 10:00:00 2019 // Last Modified By : Andrew Beach // Last Modified On : Thu Jul 23 14:15:00 2020 // Update Count : 6 // #pragma once #include #include // for nullptr_t #include // for uintptr_t #include // for move #include #include "CVQualifiers.hpp" #include "Decl.hpp" // for AggregateDecl subclasses #include "Fwd.hpp" #include "Node.hpp" // for Node, ptr, ptr_base #include "Visitor.hpp" // Must be included in *all* AST classes; should be #undef'd at the end of the file #define MUTATE_FRIEND \ template friend node_t * mutate(const node_t * node); \ template friend node_t * shallowCopy(const node_t * node); namespace ast { template< typename T > class Pass; class Type : public Node { public: CV::Qualifiers qualifiers; std::vector> attributes; Type( CV::Qualifiers q = {}, std::vector> && as = {} ) : qualifiers(q), attributes(std::move(as)) {} bool is_const() const { return qualifiers.is_const; } bool is_volatile() const { return qualifiers.is_volatile; } bool is_restrict() const { return qualifiers.is_restrict; } bool is_mutex() const { return qualifiers.is_mutex; } bool is_atomic() const { return qualifiers.is_atomic; } Type * set_const( bool v ) { qualifiers.is_const = v; return this; } Type * set_volatile( bool v ) { qualifiers.is_volatile = v; return this; } Type * set_restrict( bool v ) { qualifiers.is_restrict = v; return this; } Type * set_mutex( bool v ) { qualifiers.is_mutex = v; return this; } Type * set_atomic( bool v ) { qualifiers.is_atomic = v; return this; } /// How many elemental types are represented by this type virtual unsigned size() const { return 1; } /// Is this a void type? virtual bool isVoid() const { return size() == 0; } /// Get the i'th component of this type virtual const Type * getComponent( unsigned i ) const; /// type without outer pointers and arrays const Type * stripDeclarator() const; /// type without outer references const Type * stripReferences() const; /// number of reference occuring consecutively on the outermost layer of this type /// (i.e. do not count references nested within other types) virtual unsigned referenceDepth() const { return 0; } /// true iff type is complete type (i.e. compiler knows the size, alignment, and layout) virtual bool isComplete() const { return true; } virtual const Type * accept( Visitor & v ) const override = 0; private: virtual Type * clone() const override = 0; MUTATE_FRIEND }; /// Clear/reset the qualifiers on this type, cloning only if necessary template< enum Node::ref_type ref_t > void reset_qualifiers( ptr_base< Type, ref_t > & p, CV::Qualifiers q = {} ) { if ( p->qualifiers.val != q.val ) p.get_and_mutate()->qualifiers = q; } /// Add the specified qualifiers to this type, cloning only if necessary template< enum Node::ref_type ref_t > void add_qualifiers( ptr_base< Type, ref_t > & p, CV::Qualifiers q ) { if ( ( p->qualifiers.val & q.val ) != q.val ) p.get_and_mutate()->qualifiers |= q; } /// Remove the specified qualifiers from this type, cloning only if necessary template< enum Node::ref_type ref_t > void remove_qualifiers( ptr_base< Type, ref_t > & p, CV::Qualifiers q ) { if ( ( p->qualifiers.val & q.val ) != 0 ) p.get_and_mutate()->qualifiers -= q; } /// `void` class VoidType final : public Type { public: VoidType( CV::Qualifiers q = {} ) : Type( q ) {} unsigned size() const override { return 0; } bool isVoid() const override { return true; } bool isComplete() const override { return false; } const Type * accept( Visitor & v ) const override { return v.visit( this ); } private: VoidType * clone() const override { return new VoidType{ *this }; } MUTATE_FRIEND }; /// Built-in arithmetic type class BasicType final : public Type { public: // GENERATED START, DO NOT EDIT // GENERATED BY BasicTypes-gen.cc enum Kind { Bool, Char, SignedChar, UnsignedChar, ShortSignedInt, ShortUnsignedInt, SignedInt, UnsignedInt, LongSignedInt, LongUnsignedInt, LongLongSignedInt, LongLongUnsignedInt, SignedInt128, UnsignedInt128, uFloat16, uFloat16Complex, uFloat32, uFloat32Complex, Float, FloatComplex, uFloat32x, uFloat32xComplex, uFloat64, uFloat64Complex, Double, DoubleComplex, uFloat64x, uFloat64xComplex, uuFloat80, uFloat128, uFloat128Complex, uuFloat128, LongDouble, LongDoubleComplex, uFloat128x, uFloat128xComplex, NUMBER_OF_BASIC_TYPES } kind; // GENERATED END /// xxx -- MAX_INTEGER_TYPE should probably be in BasicTypes-gen.cc, rather than hardcoded here enum { MAX_INTEGER_TYPE = UnsignedInt128 }; /// string names of basic types; generated to match with Kind static const char *typeNames[]; BasicType( Kind k, CV::Qualifiers q = {}, std::vector> && as = {} ) : Type(q, std::move(as)), kind(k) {} /// Check if this type represents an integer type bool isInteger() const { return (unsigned)kind <= (unsigned)MAX_INTEGER_TYPE; } const Type * accept( Visitor & v ) const override { return v.visit( this ); } private: BasicType * clone() const override { return new BasicType{ *this }; } MUTATE_FRIEND }; /// Pointer/array variable length? enum LengthFlag { FixedLen, VariableLen }; /// Pointer/array static dimension? enum DimensionFlag { DynamicDim, StaticDim }; /// Pointer type `T*` class PointerType final : public Type { public: ptr base; // In C99, pointer types can be qualified in many ways, e.g. `int a[ static 3 ]` ptr dimension; LengthFlag isVarLen = FixedLen; DimensionFlag isStatic = DynamicDim; PointerType( const Type * b, CV::Qualifiers q = {} ) : Type(q), base(b), dimension() {} PointerType( const Type * b, const Expr * d, LengthFlag vl, DimensionFlag s, CV::Qualifiers q = {} ) : Type(q), base(b), dimension(d), isVarLen(vl), isStatic(s) {} // true if this pointer is actually an array bool isArray() const { return isVarLen || isStatic || dimension; } bool isComplete() const override { return ! isVarLen; } const Type * accept( Visitor & v ) const override { return v.visit( this ); } private: PointerType * clone() const override { return new PointerType{ *this }; } MUTATE_FRIEND }; /// Array type `T[]` class ArrayType final : public Type { public: ptr base; ptr dimension; LengthFlag isVarLen; DimensionFlag isStatic; ArrayType( const Type * b, const Expr * d, LengthFlag vl, DimensionFlag s, CV::Qualifiers q = {} ) : Type(q), base(b), dimension(d), isVarLen(vl), isStatic(s) {} // array types are complete if they have a dimension expression or are // VLAs ('*' in parameter declaration), and incomplete otherwise. // See 6.7.6.2 bool isComplete() const override { return dimension || isVarLen; } const Type * accept( Visitor & v ) const override { return v.visit( this ); } private: ArrayType * clone() const override { return new ArrayType{ *this }; } MUTATE_FRIEND }; /// Reference type `T&` class ReferenceType final : public Type { public: ptr base; ReferenceType( const Type * b, CV::Qualifiers q = {} ) : Type(q), base(b) {} unsigned referenceDepth() const override { return base->referenceDepth() + 1; } // Since reference types act like value types, their size is the size of the base. // This makes it simple to cast the empty tuple to a reference type, since casts that increase // the number of values are disallowed. unsigned size() const override { return base->size(); } const Type * accept( Visitor & v ) const override { return v.visit( this ); } private: ReferenceType * clone() const override { return new ReferenceType{ *this }; } MUTATE_FRIEND }; /// Qualified type `P.C` class QualifiedType final : public Type { public: ptr parent; ptr child; QualifiedType( const Type * p, const Type * c, CV::Qualifiers q = {} ) : Type(q), parent(p), child(c) {} const Type * accept( Visitor & v ) const override { return v.visit( this ); } private: QualifiedType * clone() const override { return new QualifiedType{ *this }; } MUTATE_FRIEND }; /// Function variable arguments flag enum ArgumentFlag { FixedArgs, VariableArgs }; /// Type of a function `[R1, R2](*)(P1, P2, P3)` class FunctionType final : public Type { public: using ForallList = std::vector>; using AssertionList = std::vector>; ForallList forall; AssertionList assertions; std::vector> returns; std::vector> params; /// Does the function accept a variable number of arguments following the arguments specified /// in the parameters list. /// This could be because of /// - an ellipsis in a prototype declaration /// - an unprototyped declaration ArgumentFlag isVarArgs; FunctionType( ArgumentFlag va = FixedArgs, CV::Qualifiers q = {} ) : Type(q), returns(), params(), isVarArgs(va) {} FunctionType( const FunctionType & o ) = default; /// true if either the parameters or return values contain a tttype bool isTtype() const; /// true if function parameters are unconstrained by prototype bool isUnprototyped() const { return isVarArgs && params.size() == 0; } const Type * accept( Visitor & v ) const override { return v.visit( this ); } private: FunctionType * clone() const override { return new FunctionType{ *this }; } MUTATE_FRIEND }; /// base class for types that refer to types declared elsewhere (aggregates and typedefs) class BaseInstType : public Type { public: std::vector> params; std::string name; bool hoistType = false; BaseInstType( const std::string& n, CV::Qualifiers q = {}, std::vector> && as = {} ) : Type(q, std::move(as)), params(), name(n) {} BaseInstType( const std::string& n, std::vector> && params, CV::Qualifiers q = {}, std::vector> && as = {} ) : Type(q, std::move(as)), params(std::move(params)), name(n) {} BaseInstType( const BaseInstType & o ) = default; /// Gets aggregate declaration this type refers to virtual const AggregateDecl * aggr() const = 0; /// Looks up member declarations with given name std::vector> lookup( const std::string & name ) const; private: virtual BaseInstType * clone() const override = 0; MUTATE_FRIEND }; // Common implementation for the SUE instance types. Not to be used directly. template class SueInstType final : public BaseInstType { public: using base_type = decl_t; readonly base; SueInstType( const std::string& n, CV::Qualifiers q = {}, std::vector> && as = {} ) : BaseInstType( n, q, std::move(as) ), base() {} SueInstType( const base_type * b, CV::Qualifiers q = {}, std::vector> && as = {} ); SueInstType( const base_type * b, std::vector> && params, CV::Qualifiers q = {}, std::vector> && as = {} ); bool isComplete() const override; const decl_t * aggr() const override { return base; } const Type * accept( Visitor & v ) const override { return v.visit( this ); } private: SueInstType * clone() const override { return new SueInstType{ *this }; } MUTATE_FRIEND }; /// An instance of a struct type. using StructInstType = SueInstType; /// An instance of a union type. using UnionInstType = SueInstType; /// An instance of an enum type. using EnumInstType = SueInstType; /// An instance of a trait type. class TraitInstType final : public BaseInstType { public: readonly base; TraitInstType( const std::string& n, CV::Qualifiers q = {}, std::vector> && as = {} ) : BaseInstType( n, q, std::move(as) ), base() {} TraitInstType( const TraitDecl * b, CV::Qualifiers q = {}, std::vector> && as = {} ); // not meaningful for TraitInstType bool isComplete() const override { assert(false); } const TraitDecl * aggr() const override { return base; } const Type * accept( Visitor & v ) const override { return v.visit( this ); } private: TraitInstType * clone() const override { return new TraitInstType{ *this }; } MUTATE_FRIEND }; /// instance of named type alias (typedef or variable) class TypeInstType final : public BaseInstType { public: readonly base; // previously from renameTyVars; now directly use integer fields instead of synthesized strings // a nonzero value of formal_usage indicates a formal type (only used in function type) // a zero value of formal_usage indicates an actual type (referenced inside body of parametric structs and functions) TypeDecl::Kind kind; int formal_usage; int expr_id; // compact representation used for map lookups. struct TypeEnvKey { const TypeDecl * base; int formal_usage; int expr_id; TypeEnvKey() = default; TypeEnvKey(const TypeDecl * base, int formal_usage = 0, int expr_id = 0): base(base), formal_usage(formal_usage), expr_id(expr_id) {} TypeEnvKey(const TypeInstType & inst): base(inst.base), formal_usage(inst.formal_usage), expr_id(inst.expr_id) {} std::string typeString() const { return std::string("_") + std::to_string(formal_usage) + "_" + std::to_string(expr_id) + "_" + base->name; } bool operator==(const TypeEnvKey & other) const { return base == other.base && formal_usage == other.formal_usage && expr_id == other.expr_id; } }; bool operator==(const TypeInstType & other) const { return base == other.base && formal_usage == other.formal_usage && expr_id == other.expr_id; } TypeInstType( const std::string& n, const TypeDecl * b, CV::Qualifiers q = {}, std::vector> && as = {} ) : BaseInstType( n, q, std::move(as) ), base( b ), kind( b->kind ) {} TypeInstType( const std::string& n, TypeDecl::Kind k, CV::Qualifiers q = {}, std::vector> && as = {} ) : BaseInstType( n, q, std::move(as) ), base(), kind( k ) {} TypeInstType( const TypeInstType & o ) = default; TypeInstType( const TypeEnvKey & key ) : BaseInstType(key.base->name), base(key.base), kind(key.base->kind), formal_usage(key.formal_usage), expr_id(key.expr_id) {} /// sets `base`, updating `kind` correctly void set_base( const TypeDecl * ); bool isComplete() const override; // not meaningful for TypeInstType const AggregateDecl * aggr() const override { assert(false); } const Type * accept( Visitor & v ) const override { return v.visit( this ); } std::string typeString() const { if (formal_usage > 0) return std::string("_") + std::to_string(formal_usage) + "_" + std::to_string(expr_id) + "_" + name; else return name; } private: TypeInstType * clone() const override { return new TypeInstType{ *this }; } MUTATE_FRIEND }; /// tuple type e.g. `[int, char]` class TupleType final : public Type { public: std::vector> types; std::vector> members; TupleType( std::vector> && ts, CV::Qualifiers q = {} ); // collection simulation using iterator = std::vector>::const_iterator; iterator begin() const { return types.begin(); } iterator end() const { return types.end(); } unsigned size() const override { return types.size(); } const Type * getComponent( unsigned i ) const override { assertf( i < size(), "TupleType::getComponent: index %d must be less than size %d", i, size() ); return *(begin()+i); } const Type * accept( Visitor & v ) const override { return v.visit( this ); } private: TupleType * clone() const override { return new TupleType{ *this }; } MUTATE_FRIEND }; /// Type of unresolved `typeof()` expression class TypeofType : public Type { public: ptr expr; enum Kind { Typeof, Basetypeof } kind; TypeofType( const Expr * e, Kind k = Typeof, CV::Qualifiers q = {} ) : Type(q), expr(e), kind(k) {} const Type * accept( Visitor & v ) const override { return v.visit( this ); } private: TypeofType * clone() const override { return new TypeofType{ *this }; } MUTATE_FRIEND }; /// GCC built-in varargs type class VarArgsType final : public Type { public: VarArgsType( CV::Qualifiers q = {} ) : Type( q ) {} const Type * accept( Visitor & v ) const override { return v.visit( this ); } private: VarArgsType * clone() const override { return new VarArgsType{ *this }; } MUTATE_FRIEND }; /// Type of zero constant `0` class ZeroType final : public Type { public: ZeroType( CV::Qualifiers q = {} ) : Type( q ) {} const Type * accept( Visitor & v ) const override { return v.visit( this ); } private: ZeroType * clone() const override { return new ZeroType{ *this }; } MUTATE_FRIEND }; /// Type of one constant `1` class OneType final : public Type { public: OneType( CV::Qualifiers q = {} ) : Type( q ) {} const Type * accept( Visitor & v ) const override { return v.visit( this ); } private: OneType * clone() const override { return new OneType{ *this }; } MUTATE_FRIEND }; /// Parent type for scope-qualified types at global scope class GlobalScopeType final : public Type { public: GlobalScopeType() : Type() {} const Type * accept( Visitor & v ) const override { return v.visit( this ); } private: GlobalScopeType * clone() const override { return new GlobalScopeType{ *this }; } MUTATE_FRIEND }; bool isUnboundType(const Type * type); } namespace std { template<> struct hash { size_t operator() (const ast::TypeInstType::TypeEnvKey & x) const { const size_t p = 1000007; size_t res = reinterpret_cast(x.base); res = p * res + x.formal_usage; res = p * res + x.expr_id; return res; } }; } #undef MUTATE_FRIEND // Local Variables: // // tab-width: 4 // // mode: c++ // // compile-command: "make install" // // End: //