// // Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo // // The contents of this file are covered under the licence agreement in the // file "LICENCE" distributed with Cforall. // // SymbolTable.cpp -- // // Author : Aaron B. Moss // Created On : Wed May 29 11:00:00 2019 // Last Modified By : Aaron B. Moss // Last Modified On : Wed May 29 11:00:00 2019 // Update Count : 1 // #include "SymbolTable.hpp" #include #include "Decl.hpp" #include "Expr.hpp" #include "Type.hpp" #include "CodeGen/OperatorTable.h" // for isCtorDtorAssign #include "Common/SemanticError.h" #include "Common/Stats/Counter.h" #include "GenPoly/GenPoly.h" #include "InitTweak/InitTweak.h" #include "ResolvExpr/Cost.h" #include "ResolvExpr/typeops.h" #include "SymTab/Mangler.h" namespace ast { // Statistics block namespace { static inline auto stats() { using namespace Stats::Counters; static auto group = build("Indexers"); static struct { SimpleCounter * count; AverageCounter * size; SimpleCounter * new_scopes; SimpleCounter * lazy_scopes; AverageCounter * avg_scope_depth; MaxCounter * max_scope_depth; SimpleCounter * add_calls; SimpleCounter * lookup_calls; SimpleCounter * map_lookups; SimpleCounter * map_mutations; } ret = { .count = build("Count", group), .size = build>("Average Size", group), .new_scopes = build("Scopes", group), .lazy_scopes = build("Lazy Scopes", group), .avg_scope_depth = build>("Average Scope", group), .max_scope_depth = build>("Max Scope", group), .add_calls = build("Add Calls", group), .lookup_calls = build("Lookup Calls", group), .map_lookups = build("Map Lookups", group), .map_mutations = build("Map Mutations", group) }; return ret; } } Expr * SymbolTable::IdData::combine( const CodeLocation & loc, ResolvExpr::Cost & cost ) const { Expr * ret = ( baseExpr ) ? (Expr *)new MemberExpr{ loc, id, referenceToRvalueConversion( baseExpr, cost ) } : (Expr *)new VariableExpr{ loc, id }; if ( deleter ) { ret = new DeletedExpr{ loc, ret, deleter }; } return ret; } SymbolTable::SymbolTable() : idTable(), typeTable(), structTable(), enumTable(), unionTable(), traitTable(), prevScope(), scope( 0 ), repScope( 0 ) { ++*stats().count; } SymbolTable::~SymbolTable() { stats().size->push( idTable ? idTable->size() : 0 ); } void SymbolTable::enterScope() { ++scope; ++*stats().new_scopes; stats().avg_scope_depth->push( scope ); stats().max_scope_depth->push( scope ); } void SymbolTable::leaveScope() { if ( repScope == scope ) { Ptr prev = prevScope; // make sure prevScope stays live *this = std::move(*prevScope); // replace with previous scope } --scope; } SymbolTable::SpecialFunctionKind SymbolTable::getSpecialFunctionKind(const std::string & name) { if (name == "?{}") return CTOR; if (name == "^?{}") return DTOR; if (name == "?=?") return ASSIGN; return NUMBER_OF_KINDS; } std::vector SymbolTable::lookupId( const std::string &id ) const { static Stats::Counters::CounterGroup * name_lookup_stats = Stats::Counters::build("Name Lookup Stats"); static std::map lookups_by_name; static std::map candidates_by_name; SpecialFunctionKind kind = getSpecialFunctionKind(id); if (kind != NUMBER_OF_KINDS) return specialLookupId(kind); ++*stats().lookup_calls; if ( ! idTable ) return {}; ++*stats().map_lookups; auto decls = idTable->find( id ); if ( decls == idTable->end() ) return {}; std::vector out; for ( auto decl : *(decls->second) ) { out.push_back( decl.second ); } if (Stats::Counters::enabled) { if (! lookups_by_name.count(id)) { // leaks some strings, but it is because Counters do not hold them auto lookupCounterName = new std::string(id + "%count"); auto candidatesCounterName = new std::string(id + "%candidate"); lookups_by_name.emplace(id, new Stats::Counters::SimpleCounter(lookupCounterName->c_str(), name_lookup_stats)); candidates_by_name.emplace(id, new Stats::Counters::SimpleCounter(candidatesCounterName->c_str(), name_lookup_stats)); } (*lookups_by_name[id]) ++; *candidates_by_name[id] += out.size(); } return out; } std::vector SymbolTable::specialLookupId( SymbolTable::SpecialFunctionKind kind, const std::string & otypeKey ) const { static Stats::Counters::CounterGroup * special_stats = Stats::Counters::build("Special Lookups"); static Stats::Counters::SimpleCounter * stat_counts[3] = { Stats::Counters::build("constructor - count", special_stats), Stats::Counters::build("destructor - count", special_stats), Stats::Counters::build("assignment - count", special_stats) }; static Stats::Counters::SimpleCounter * stat_candidates[3] = { Stats::Counters::build("constructor - candidates", special_stats), Stats::Counters::build("destructor - candidates", special_stats), Stats::Counters::build("assignment - candidates", special_stats) }; static Stats::Counters::SimpleCounter * num_lookup_with_key = Stats::Counters::build("keyed lookups", special_stats); static Stats::Counters::SimpleCounter * num_lookup_without_key = Stats::Counters::build("unkeyed lookups", special_stats); assert (kind != NUMBER_OF_KINDS); ++*stats().lookup_calls; if ( ! specialFunctionTable[kind] ) return {}; std::vector out; if (otypeKey.empty()) { // returns everything ++*num_lookup_without_key; for (auto & table : *specialFunctionTable[kind]) { for (auto & decl : *table.second) { out.push_back(decl.second); } } } else { ++*num_lookup_with_key; ++*stats().map_lookups; auto decls = specialFunctionTable[kind]->find(otypeKey); if (decls == specialFunctionTable[kind]->end()) return {}; for (auto decl : *(decls->second)) { out.push_back(decl.second); } } ++*stat_counts[kind]; *stat_candidates[kind] += out.size(); return out; } const NamedTypeDecl * SymbolTable::lookupType( const std::string &id ) const { ++*stats().lookup_calls; if ( ! typeTable ) return nullptr; ++*stats().map_lookups; auto it = typeTable->find( id ); return it == typeTable->end() ? nullptr : it->second.decl; } const StructDecl * SymbolTable::lookupStruct( const std::string &id ) const { ++*stats().lookup_calls; if ( ! structTable ) return nullptr; ++*stats().map_lookups; auto it = structTable->find( id ); return it == structTable->end() ? nullptr : it->second.decl; } const EnumDecl * SymbolTable::lookupEnum( const std::string &id ) const { ++*stats().lookup_calls; if ( ! enumTable ) return nullptr; ++*stats().map_lookups; auto it = enumTable->find( id ); return it == enumTable->end() ? nullptr : it->second.decl; } const UnionDecl * SymbolTable::lookupUnion( const std::string &id ) const { ++*stats().lookup_calls; if ( ! unionTable ) return nullptr; ++*stats().map_lookups; auto it = unionTable->find( id ); return it == unionTable->end() ? nullptr : it->second.decl; } const TraitDecl * SymbolTable::lookupTrait( const std::string &id ) const { ++*stats().lookup_calls; if ( ! traitTable ) return nullptr; ++*stats().map_lookups; auto it = traitTable->find( id ); return it == traitTable->end() ? nullptr : it->second.decl; } const NamedTypeDecl * SymbolTable::globalLookupType( const std::string &id ) const { return atScope( 0 )->lookupType( id ); } const StructDecl * SymbolTable::globalLookupStruct( const std::string &id ) const { return atScope( 0 )->lookupStruct( id ); } const UnionDecl * SymbolTable::globalLookupUnion( const std::string &id ) const { return atScope( 0 )->lookupUnion( id ); } const EnumDecl * SymbolTable::globalLookupEnum( const std::string &id ) const { return atScope( 0 )->lookupEnum( id ); } void SymbolTable::addId( const DeclWithType * decl, const Expr * baseExpr ) { // default handling of conflicts is to raise an error addId( decl, OnConflict::error(), baseExpr, decl->isDeleted ? decl : nullptr ); } void SymbolTable::addDeletedId( const DeclWithType * decl, const Decl * deleter ) { // default handling of conflicts is to raise an error addId( decl, OnConflict::error(), nullptr, deleter ); } namespace { /// true if redeclaration conflict between two types bool addedTypeConflicts( const NamedTypeDecl * existing, const NamedTypeDecl * added ) { if ( existing->base == nullptr ) { return false; } else if ( added->base == nullptr ) { return true; } else { // typedef redeclarations are errors only if types are different if ( ! ResolvExpr::typesCompatible( existing->base, added->base, SymbolTable{} ) ) { SemanticError( added->location, "redeclaration of " + added->name ); } } // does not need to be added to the table if both existing and added have a base that are // the same return true; } /// true if redeclaration conflict between two aggregate declarations bool addedDeclConflicts( const AggregateDecl * existing, const AggregateDecl * added ) { if ( ! existing->body ) { return false; } else if ( added->body ) { SemanticError( added, "redeclaration of " ); } return true; } } void SymbolTable::addType( const NamedTypeDecl * decl ) { ++*stats().add_calls; const std::string &id = decl->name; if ( ! typeTable ) { typeTable = TypeTable::new_ptr(); } else { ++*stats().map_lookups; auto existing = typeTable->find( id ); if ( existing != typeTable->end() && existing->second.scope == scope && addedTypeConflicts( existing->second.decl, decl ) ) return; } lazyInitScope(); ++*stats().map_mutations; typeTable = typeTable->set( id, scoped{ decl, scope } ); } void SymbolTable::addStruct( const std::string &id ) { addStruct( new StructDecl( CodeLocation{}, id ) ); } void SymbolTable::addStruct( const StructDecl * decl ) { ++*stats().add_calls; const std::string &id = decl->name; if ( ! structTable ) { structTable = StructTable::new_ptr(); } else { ++*stats().map_lookups; auto existing = structTable->find( id ); if ( existing != structTable->end() && existing->second.scope == scope && addedDeclConflicts( existing->second.decl, decl ) ) return; } lazyInitScope(); ++*stats().map_mutations; structTable = structTable->set( id, scoped{ decl, scope } ); } void SymbolTable::addEnum( const EnumDecl *decl ) { ++*stats().add_calls; const std::string &id = decl->name; if ( ! enumTable ) { enumTable = EnumTable::new_ptr(); } else { ++*stats().map_lookups; auto existing = enumTable->find( id ); if ( existing != enumTable->end() && existing->second.scope == scope && addedDeclConflicts( existing->second.decl, decl ) ) return; } lazyInitScope(); ++*stats().map_mutations; enumTable = enumTable->set( id, scoped{ decl, scope } ); } void SymbolTable::addUnion( const std::string &id ) { addUnion( new UnionDecl( CodeLocation{}, id ) ); } void SymbolTable::addUnion( const UnionDecl * decl ) { ++*stats().add_calls; const std::string &id = decl->name; if ( ! unionTable ) { unionTable = UnionTable::new_ptr(); } else { ++*stats().map_lookups; auto existing = unionTable->find( id ); if ( existing != unionTable->end() && existing->second.scope == scope && addedDeclConflicts( existing->second.decl, decl ) ) return; } lazyInitScope(); ++*stats().map_mutations; unionTable = unionTable->set( id, scoped{ decl, scope } ); } void SymbolTable::addTrait( const TraitDecl * decl ) { ++*stats().add_calls; const std::string &id = decl->name; if ( ! traitTable ) { traitTable = TraitTable::new_ptr(); } else { ++*stats().map_lookups; auto existing = traitTable->find( id ); if ( existing != traitTable->end() && existing->second.scope == scope && addedDeclConflicts( existing->second.decl, decl ) ) return; } lazyInitScope(); ++*stats().map_mutations; traitTable = traitTable->set( id, scoped{ decl, scope } ); } void SymbolTable::addWith( const std::vector< ptr > & withExprs, const Decl * withStmt ) { for ( const Expr * expr : withExprs ) { if ( ! expr->result ) continue; const Type * resTy = expr->result->stripReferences(); auto aggrType = dynamic_cast< const BaseInstType * >( resTy ); assertf( aggrType, "WithStmt expr has non-aggregate type: %s", toString( expr->result ).c_str() ); const AggregateDecl * aggr = aggrType->aggr(); assertf( aggr, "WithStmt has null aggregate from type: %s", toString( expr->result ).c_str() ); addMembers( aggr, expr, OnConflict::deleteWith( withStmt ) ); } } void SymbolTable::addIds( const std::vector< ptr > & decls ) { for ( const DeclWithType * decl : decls ) { addId( decl ); } } void SymbolTable::addTypes( const std::vector< ptr > & tds ) { for ( const TypeDecl * td : tds ) { addType( td ); addIds( td->assertions ); } } void SymbolTable::addFunction( const FunctionDecl * func ) { for (auto & td : func->type_params) { addType(td); } for (auto & asst : func->assertions) { addId(asst); } // addTypes( func->type->forall ); addIds( func->returns ); addIds( func->params ); } void SymbolTable::lazyInitScope() { // do nothing if already in represented scope if ( repScope == scope ) return; ++*stats().lazy_scopes; // create rollback prevScope = std::make_shared( *this ); // update repScope repScope = scope; } const ast::SymbolTable * SymbolTable::atScope( unsigned long target ) const { // by lazy construction, final symtab in list has repScope 0, cannot be > target // otherwise, will find first scope representing the target const SymbolTable * symtab = this; while ( symtab->repScope > target ) { symtab = symtab->prevScope.get(); } return symtab; } namespace { /// gets the base type of the first parameter; decl must be a ctor/dtor/assignment function std::string getOtypeKey( const FunctionType * ftype, bool stripParams = true ) { const auto & params = ftype->params; assert( ! params.empty() ); // use base type of pointer, so that qualifiers on the pointer type aren't considered. const Type * base = InitTweak::getPointerBase( params.front() ); assert( base ); if (stripParams) { if (dynamic_cast(base)) return Mangle::Encoding::pointer; return Mangle::mangle( base, Mangle::Type | Mangle::NoGenericParams ); } else return Mangle::mangle( base ); } /// gets the declaration for the function acting on a type specified by otype key, /// nullptr if none such const FunctionDecl * getFunctionForOtype( const DeclWithType * decl, const std::string & otypeKey ) { auto func = dynamic_cast< const FunctionDecl * >( decl ); if ( ! func || otypeKey != getOtypeKey( func->type, false ) ) return nullptr; return func; } } bool SymbolTable::removeSpecialOverrides( SymbolTable::IdData & data, SymbolTable::MangleTable::Ptr & mangleTable ) { // if a type contains user defined ctor/dtor/assign, then special rules trigger, which // determine the set of ctor/dtor/assign that can be used by the requester. In particular, // if the user defines a default ctor, then the generated default ctor is unavailable, // likewise for copy ctor and dtor. If the user defines any ctor/dtor, then no generated // field ctors are available. If the user defines any ctor then the generated default ctor // is unavailable (intrinsic default ctor must be overridden exactly). If the user defines // anything that looks like a copy constructor, then the generated copy constructor is // unavailable, and likewise for the assignment operator. // only relevant on function declarations const FunctionDecl * function = data.id.as< FunctionDecl >(); if ( ! function ) return true; // only need to perform this check for constructors, destructors, and assignment functions if ( ! CodeGen::isCtorDtorAssign( data.id->name ) ) return true; // set up information for this type bool dataIsUserDefinedFunc = ! function->linkage.is_overrideable; bool dataIsCopyFunc = InitTweak::isCopyFunction( function ); std::string dataOtypeKey = getOtypeKey( function->type, false ); // requires exact match to override autogen if ( dataIsUserDefinedFunc && dataIsCopyFunc ) { // this is a user-defined copy function // if this is the first such, delete/remove non-user-defined overloads as needed std::vector< std::string > removed; std::vector< MangleTable::value_type > deleted; bool alreadyUserDefinedFunc = false; for ( const auto& entry : *mangleTable ) { // skip decls that aren't functions or are for the wrong type const FunctionDecl * decl = getFunctionForOtype( entry.second.id, dataOtypeKey ); if ( ! decl ) continue; bool isCopyFunc = InitTweak::isCopyFunction( decl ); if ( ! decl->linkage.is_overrideable ) { // matching user-defined function if ( isCopyFunc ) { // mutation already performed, return early return true; } else { // note that non-copy deletions already performed alreadyUserDefinedFunc = true; } } else { // non-user-defined function; mark for deletion/removal as appropriate if ( isCopyFunc ) { removed.push_back( entry.first ); } else if ( ! alreadyUserDefinedFunc ) { deleted.push_back( entry ); } } } // perform removals from mangle table, and deletions if necessary for ( const auto& key : removed ) { ++*stats().map_mutations; mangleTable = mangleTable->erase( key ); } if ( ! alreadyUserDefinedFunc ) for ( const auto& entry : deleted ) { ++*stats().map_mutations; mangleTable = mangleTable->set( entry.first, IdData{ entry.second, function } ); } } else if ( dataIsUserDefinedFunc ) { // this is a user-defined non-copy function // if this is the first user-defined function, delete non-user-defined overloads std::vector< MangleTable::value_type > deleted; for ( const auto& entry : *mangleTable ) { // skip decls that aren't functions or are for the wrong type const FunctionDecl * decl = getFunctionForOtype( entry.second.id, dataOtypeKey ); if ( ! decl ) continue; // exit early if already a matching user-defined function; // earlier function will have mutated table if ( ! decl->linkage.is_overrideable ) return true; // skip mutating intrinsic functions if ( decl->linkage == Linkage::Intrinsic ) continue; // user-defined non-copy functions do not override copy functions if ( InitTweak::isCopyFunction( decl ) ) continue; // this function to be deleted after mangleTable iteration is complete deleted.push_back( entry ); } // mark deletions to update mangle table // this needs to be a separate loop because of iterator invalidation for ( const auto& entry : deleted ) { ++*stats().map_mutations; mangleTable = mangleTable->set( entry.first, IdData{ entry.second, function } ); } } else if ( function->linkage != Linkage::Intrinsic ) { // this is an overridable generated function // if there already exists a matching user-defined function, delete this appropriately for ( const auto& entry : *mangleTable ) { // skip decls that aren't functions or are for the wrong type const FunctionDecl * decl = getFunctionForOtype( entry.second.id, dataOtypeKey ); if ( ! decl ) continue; // skip non-user-defined functions if ( decl->linkage.is_overrideable ) continue; if ( dataIsCopyFunc ) { // remove current function if exists a user-defined copy function // since the signatures for copy functions don't need to match exactly, using // a delete statement is the wrong approach if ( InitTweak::isCopyFunction( decl ) ) return false; } else { // mark current function deleted by first user-defined function found data.deleter = decl; return true; } } } // nothing (more) to fix, return true return true; } namespace { /// true iff the declaration represents a function bool isFunction( const DeclWithType * decl ) { return GenPoly::getFunctionType( decl->get_type() ); } bool isObject( const DeclWithType * decl ) { return ! isFunction( decl ); } /// true if the declaration represents a definition instead of a forward decl bool isDefinition( const DeclWithType * decl ) { if ( auto func = dynamic_cast< const FunctionDecl * >( decl ) ) { // a function is a definition if it has a body return func->stmts; } else { // an object is a definition if it is not marked extern return ! decl->storage.is_extern; } } } bool SymbolTable::addedIdConflicts( const SymbolTable::IdData & existing, const DeclWithType * added, SymbolTable::OnConflict handleConflicts, const Decl * deleter ) { // if we're giving the same name mangling to things of different types then there is something // wrong assert( (isObject( added ) && isObject( existing.id ) ) || ( isFunction( added ) && isFunction( existing.id ) ) ); if ( existing.id->linkage.is_overrideable ) { // new definition shadows the autogenerated one, even at the same scope return false; } else if ( existing.id->linkage.is_mangled || ResolvExpr::typesCompatible( added->get_type(), existing.id->get_type(), SymbolTable{} ) ) { // it is a conflict if one declaration is deleted and the other is not if ( deleter && ! existing.deleter ) { if ( handleConflicts.mode == OnConflict::Error ) { SemanticError( added, "deletion of defined identifier " ); } return true; } else if ( ! deleter && existing.deleter ) { if ( handleConflicts.mode == OnConflict::Error ) { SemanticError( added, "definition of deleted identifier " ); } return true; } // it is a conflict if both declarations are definitions if ( isDefinition( added ) && isDefinition( existing.id ) ) { if ( handleConflicts.mode == OnConflict::Error ) { SemanticError( added, isFunction( added ) ? "duplicate function definition for " : "duplicate object definition for " ); } return true; } } else { if ( handleConflicts.mode == OnConflict::Error ) { SemanticError( added, "duplicate definition for " ); } return true; } return true; } void SymbolTable::addId( const DeclWithType * decl, SymbolTable::OnConflict handleConflicts, const Expr * baseExpr, const Decl * deleter ) { SpecialFunctionKind kind = getSpecialFunctionKind(decl->name); if (kind == NUMBER_OF_KINDS) { // not a special decl addId(decl, decl->name, idTable, handleConflicts, baseExpr, deleter); } else { std::string key; if (auto func = dynamic_cast(decl)) { key = getOtypeKey(func->type); } else if (auto obj = dynamic_cast(decl)) { key = getOtypeKey(obj->type.strict_as()->base.strict_as()); } else { assertf(false, "special decl with non-function type"); } addId(decl, key, specialFunctionTable[kind], handleConflicts, baseExpr, deleter); } } void SymbolTable::addId( const DeclWithType * decl, const std::string & lookupKey, IdTable::Ptr & table, SymbolTable::OnConflict handleConflicts, const Expr * baseExpr, const Decl * deleter ) { ++*stats().add_calls; const std::string &name = decl->name; if ( name == "" ) return; std::string mangleName; if ( decl->linkage.is_overrideable ) { // mangle the name without including the appropriate suffix, so overridable routines // are placed into the same "bucket" as their user defined versions. mangleName = Mangle::mangle( decl, Mangle::Mode{ Mangle::NoOverrideable } ); } else { mangleName = Mangle::mangle( decl ); } // this ensures that no two declarations with the same unmangled name at the same scope // both have C linkage if ( decl->linkage.is_mangled ) { // Check that a Cforall declaration doesn't override any C declaration if ( hasCompatibleCDecl( name, mangleName ) ) { SemanticError( decl, "Cforall declaration hides C function " ); } } else { // NOTE: only correct if name mangling is completely isomorphic to C // type-compatibility, which it may not be. if ( hasIncompatibleCDecl( name, mangleName ) ) { SemanticError( decl, "conflicting overload of C function " ); } } // ensure tables exist and add identifier MangleTable::Ptr mangleTable; if ( ! table ) { table = IdTable::new_ptr(); mangleTable = MangleTable::new_ptr(); } else { ++*stats().map_lookups; auto decls = table->find( lookupKey ); if ( decls == table->end() ) { mangleTable = MangleTable::new_ptr(); } else { mangleTable = decls->second; // skip in-scope repeat declarations of same identifier ++*stats().map_lookups; auto existing = mangleTable->find( mangleName ); if ( existing != mangleTable->end() && existing->second.scope == scope && existing->second.id ) { if ( addedIdConflicts( existing->second, decl, handleConflicts, deleter ) ) { if ( handleConflicts.mode == OnConflict::Delete ) { // set delete expression for conflicting identifier lazyInitScope(); *stats().map_mutations += 2; table = table->set( lookupKey, mangleTable->set( mangleName, IdData{ existing->second, handleConflicts.deleter } ) ); } return; } } } } // add/overwrite with new identifier lazyInitScope(); IdData data{ decl, baseExpr, deleter, scope }; // Ensure that auto-generated ctor/dtor/assignment are deleted if necessary if (table != idTable) { // adding to special table if ( ! removeSpecialOverrides( data, mangleTable ) ) return; } *stats().map_mutations += 2; table = table->set( lookupKey, mangleTable->set( mangleName, std::move(data) ) ); } void SymbolTable::addMembers( const AggregateDecl * aggr, const Expr * expr, SymbolTable::OnConflict handleConflicts ) { for ( const Decl * decl : aggr->members ) { if ( auto dwt = dynamic_cast< const DeclWithType * >( decl ) ) { addId( dwt, handleConflicts, expr ); if ( dwt->name == "" ) { const Type * t = dwt->get_type()->stripReferences(); if ( auto rty = dynamic_cast( t ) ) { if ( ! dynamic_cast(rty) && ! dynamic_cast(rty) ) continue; ResolvExpr::Cost cost = ResolvExpr::Cost::zero; const Expr * base = ResolvExpr::referenceToRvalueConversion( expr, cost ); addMembers( rty->aggr(), new MemberExpr{ base->location, dwt, base }, handleConflicts ); } } } } } bool SymbolTable::hasCompatibleCDecl( const std::string &id, const std::string &mangleName ) const { if ( ! idTable ) return false; ++*stats().map_lookups; auto decls = idTable->find( id ); if ( decls == idTable->end() ) return false; for ( auto decl : *(decls->second) ) { // skip other scopes (hidden by this decl) if ( decl.second.scope != scope ) continue; // check for C decl with compatible type (by mangleName) if ( ! decl.second.id->linkage.is_mangled && decl.first == mangleName ) return true; } return false; } bool SymbolTable::hasIncompatibleCDecl( const std::string &id, const std::string &mangleName ) const { if ( ! idTable ) return false; ++*stats().map_lookups; auto decls = idTable->find( id ); if ( decls == idTable->end() ) return false; for ( auto decl : *(decls->second) ) { // skip other scopes (hidden by this decl) if ( decl.second.scope != scope ) continue; // check for C decl with incompatible type (by manglename) if ( ! decl.second.id->linkage.is_mangled && decl.first != mangleName ) return true; } return false; } } // Local Variables: // // tab-width: 4 // // mode: c++ // // compile-command: "make install" // // End: //