1 | // |
---|
2 | // Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo |
---|
3 | // |
---|
4 | // The contents of this file are covered under the licence agreement in the |
---|
5 | // file "LICENCE" distributed with Cforall. |
---|
6 | // |
---|
7 | // signal.c -- |
---|
8 | // |
---|
9 | // Author : Thierry Delisle |
---|
10 | // Created On : Mon Jun 5 14:20:42 2017 |
---|
11 | // Last Modified By : Peter A. Buhr |
---|
12 | // Last Modified On : Fri Nov 6 07:42:13 2020 |
---|
13 | // Update Count : 54 |
---|
14 | // |
---|
15 | |
---|
16 | #define __cforall_thread__ |
---|
17 | |
---|
18 | #include "preemption.hfa" |
---|
19 | #include <assert.h> |
---|
20 | |
---|
21 | #include <errno.h> |
---|
22 | #include <stdio.h> |
---|
23 | #include <string.h> |
---|
24 | #include <unistd.h> |
---|
25 | #include <limits.h> // PTHREAD_STACK_MIN |
---|
26 | |
---|
27 | #include "bits/signal.hfa" |
---|
28 | #include "kernel_private.hfa" |
---|
29 | |
---|
30 | #if !defined(__CFA_DEFAULT_PREEMPTION__) |
---|
31 | #define __CFA_DEFAULT_PREEMPTION__ 10`ms |
---|
32 | #endif |
---|
33 | |
---|
34 | Duration default_preemption() __attribute__((weak)) { |
---|
35 | return __CFA_DEFAULT_PREEMPTION__; |
---|
36 | } |
---|
37 | |
---|
38 | // FwdDeclarations : timeout handlers |
---|
39 | static void preempt( processor * this ); |
---|
40 | static void timeout( $thread * this ); |
---|
41 | |
---|
42 | // FwdDeclarations : Signal handlers |
---|
43 | static void sigHandler_ctxSwitch( __CFA_SIGPARMS__ ); |
---|
44 | static void sigHandler_alarm ( __CFA_SIGPARMS__ ); |
---|
45 | static void sigHandler_segv ( __CFA_SIGPARMS__ ); |
---|
46 | static void sigHandler_ill ( __CFA_SIGPARMS__ ); |
---|
47 | static void sigHandler_fpe ( __CFA_SIGPARMS__ ); |
---|
48 | static void sigHandler_abort ( __CFA_SIGPARMS__ ); |
---|
49 | |
---|
50 | // FwdDeclarations : alarm thread main |
---|
51 | static void * alarm_loop( __attribute__((unused)) void * args ); |
---|
52 | |
---|
53 | // Machine specific register name |
---|
54 | #if defined( __i386 ) |
---|
55 | #define CFA_REG_IP gregs[REG_EIP] |
---|
56 | #elif defined( __x86_64 ) |
---|
57 | #define CFA_REG_IP gregs[REG_RIP] |
---|
58 | #elif defined( __arm__ ) |
---|
59 | #define CFA_REG_IP arm_pc |
---|
60 | #elif defined( __aarch64__ ) |
---|
61 | #define CFA_REG_IP pc |
---|
62 | #else |
---|
63 | #error unsupported hardware architecture |
---|
64 | #endif |
---|
65 | |
---|
66 | KERNEL_STORAGE(event_kernel_t, event_kernel); // private storage for event kernel |
---|
67 | event_kernel_t * event_kernel; // kernel public handle to even kernel |
---|
68 | static pthread_t alarm_thread; // pthread handle to alarm thread |
---|
69 | static void * alarm_stack; // pthread stack for alarm thread |
---|
70 | |
---|
71 | static void ?{}(event_kernel_t & this) with( this ) { |
---|
72 | alarms{}; |
---|
73 | lock{}; |
---|
74 | } |
---|
75 | |
---|
76 | enum { |
---|
77 | PREEMPT_NORMAL = 0, |
---|
78 | PREEMPT_TERMINATE = 1, |
---|
79 | }; |
---|
80 | |
---|
81 | //============================================================================================= |
---|
82 | // Kernel Preemption logic |
---|
83 | //============================================================================================= |
---|
84 | |
---|
85 | // Get next expired node |
---|
86 | static inline alarm_node_t * get_expired( alarm_list_t * alarms, Time currtime ) { |
---|
87 | if( ! & (*alarms)`first ) return 0p; // If no alarms return null |
---|
88 | if( (*alarms)`first.alarm >= currtime ) return 0p; // If alarms head not expired return null |
---|
89 | return pop(alarms); // Otherwise just pop head |
---|
90 | } |
---|
91 | |
---|
92 | // Tick one frame of the Discrete Event Simulation for alarms |
---|
93 | static void tick_preemption(void) { |
---|
94 | alarm_node_t * node = 0p; // Used in the while loop but cannot be declared in the while condition |
---|
95 | alarm_list_t * alarms = &event_kernel->alarms; // Local copy for ease of reading |
---|
96 | Time currtime = __kernel_get_time(); // Check current time once so everything "happens at once" |
---|
97 | |
---|
98 | //Loop throught every thing expired |
---|
99 | while( node = get_expired( alarms, currtime ) ) { |
---|
100 | // __cfaabi_dbg_print_buffer_decl( " KERNEL: preemption tick.\n" ); |
---|
101 | Duration period = node->period; |
---|
102 | if( period == 0) { |
---|
103 | node->set = false; // Node is one-shot, just mark it as not pending |
---|
104 | } |
---|
105 | |
---|
106 | // Check if this is a kernel |
---|
107 | if( node->type == Kernel ) { |
---|
108 | preempt( node->proc ); |
---|
109 | } |
---|
110 | else if( node->type == User ) { |
---|
111 | timeout( node->thrd ); |
---|
112 | } |
---|
113 | else { |
---|
114 | node->callback(*node); |
---|
115 | } |
---|
116 | |
---|
117 | // Check if this is a periodic alarm |
---|
118 | if( period > 0 ) { |
---|
119 | // __cfaabi_dbg_print_buffer_local( " KERNEL: alarm period is %lu.\n", period.tv ); |
---|
120 | node->alarm = currtime + period; // Alarm is periodic, add currtime to it (used cached current time) |
---|
121 | insert( alarms, node ); // Reinsert the node for the next time it triggers |
---|
122 | } |
---|
123 | } |
---|
124 | |
---|
125 | // If there are still alarms pending, reset the timer |
---|
126 | if( & (*alarms)`first ) { |
---|
127 | __cfadbg_print_buffer_decl(preemption, " KERNEL: @%ju(%ju) resetting alarm to %ju.\n", currtime.tv, __kernel_get_time().tv, (alarms->head->alarm - currtime).tv); |
---|
128 | Duration delta = (*alarms)`first.alarm - currtime; |
---|
129 | Duration capped = max(delta, 50`us); |
---|
130 | // itimerval tim = { caped }; |
---|
131 | // __cfaabi_dbg_print_buffer_local( " Values are %lu, %lu, %lu %lu.\n", delta.tv, caped.tv, tim.it_value.tv_sec, tim.it_value.tv_usec); |
---|
132 | |
---|
133 | __kernel_set_timer( capped ); |
---|
134 | } |
---|
135 | } |
---|
136 | |
---|
137 | // Update the preemption of a processor and notify interested parties |
---|
138 | void update_preemption( processor * this, Duration duration ) { |
---|
139 | alarm_node_t * alarm = this->preemption_alarm; |
---|
140 | |
---|
141 | // Alarms need to be enabled |
---|
142 | if ( duration > 0 && ! alarm->set ) { |
---|
143 | alarm->alarm = __kernel_get_time() + duration; |
---|
144 | alarm->period = duration; |
---|
145 | register_self( alarm ); |
---|
146 | } |
---|
147 | // Zero duration but alarm is set |
---|
148 | else if ( duration == 0 && alarm->set ) { |
---|
149 | unregister_self( alarm ); |
---|
150 | alarm->alarm = 0; |
---|
151 | alarm->period = 0; |
---|
152 | } |
---|
153 | // If alarm is different from previous, change it |
---|
154 | else if ( duration > 0 && alarm->period != duration ) { |
---|
155 | unregister_self( alarm ); |
---|
156 | alarm->alarm = __kernel_get_time() + duration; |
---|
157 | alarm->period = duration; |
---|
158 | register_self( alarm ); |
---|
159 | } |
---|
160 | } |
---|
161 | |
---|
162 | //============================================================================================= |
---|
163 | // Kernel Signal Tools |
---|
164 | //============================================================================================= |
---|
165 | |
---|
166 | // In a user-level threading system, there are handful of thread-local variables where this problem occurs on the ARM. |
---|
167 | // |
---|
168 | // For each kernel thread running user-level threads, there is a flag variable to indicate if interrupts are |
---|
169 | // enabled/disabled for that kernel thread. Therefore, this variable is made thread local. |
---|
170 | // |
---|
171 | // For example, this code fragment sets the state of the "interrupt" variable in thread-local memory. |
---|
172 | // |
---|
173 | // _Thread_local volatile int interrupts; |
---|
174 | // int main() { |
---|
175 | // interrupts = 0; // disable interrupts } |
---|
176 | // |
---|
177 | // which generates the following code on the ARM |
---|
178 | // |
---|
179 | // (gdb) disassemble main |
---|
180 | // Dump of assembler code for function main: |
---|
181 | // 0x0000000000000610 <+0>: mrs x1, tpidr_el0 |
---|
182 | // 0x0000000000000614 <+4>: mov w0, #0x0 // #0 |
---|
183 | // 0x0000000000000618 <+8>: add x1, x1, #0x0, lsl #12 |
---|
184 | // 0x000000000000061c <+12>: add x1, x1, #0x10 |
---|
185 | // 0x0000000000000620 <+16>: str wzr, [x1] |
---|
186 | // 0x0000000000000624 <+20>: ret |
---|
187 | // |
---|
188 | // The mrs moves a pointer from coprocessor register tpidr_el0 into register x1. Register w0 is set to 0. The two adds |
---|
189 | // increase the TLS pointer with the displacement (offset) 0x10, which is the location in the TSL of variable |
---|
190 | // "interrupts". Finally, 0 is stored into "interrupts" through the pointer in register x1 that points into the |
---|
191 | // TSL. Now once x1 has the pointer to the location of the TSL for kernel thread N, it can be be preempted at a |
---|
192 | // user-level and the user thread is put on the user-level ready-queue. When the preempted thread gets to the front of |
---|
193 | // the user-level ready-queue it is run on kernel thread M. It now stores 0 into "interrupts" back on kernel thread N, |
---|
194 | // turning off interrupt on the wrong kernel thread. |
---|
195 | // |
---|
196 | // On the x86, the following code is generated for the same code fragment. |
---|
197 | // |
---|
198 | // (gdb) disassemble main |
---|
199 | // Dump of assembler code for function main: |
---|
200 | // 0x0000000000400420 <+0>: movl $0x0,%fs:0xfffffffffffffffc |
---|
201 | // 0x000000000040042c <+12>: xor %eax,%eax |
---|
202 | // 0x000000000040042e <+14>: retq |
---|
203 | // |
---|
204 | // and there is base-displacement addressing used to atomically reset variable "interrupts" off of the TSL pointer in |
---|
205 | // register "fs". |
---|
206 | // |
---|
207 | // Hence, the ARM has base-displacement address for the general purpose registers, BUT not to the coprocessor |
---|
208 | // registers. As a result, generating the address for the write into variable "interrupts" is no longer atomic. |
---|
209 | // |
---|
210 | // Note this problem does NOT occur when just using multiple kernel threads because the preemption ALWAYS restarts the |
---|
211 | // thread on the same kernel thread. |
---|
212 | // |
---|
213 | // The obvious question is why does ARM use a coprocessor register to store the TSL pointer given that coprocessor |
---|
214 | // registers are second-class registers with respect to the instruction set. One possible answer is that they did not |
---|
215 | // want to dedicate one of the general registers to hold the TLS pointer and there was a free coprocessor register |
---|
216 | // available. |
---|
217 | |
---|
218 | __cfaabi_dbg_debug_do( static thread_local void * last_interrupt = 0; ) |
---|
219 | |
---|
220 | extern "C" { |
---|
221 | // Disable interrupts by incrementing the counter |
---|
222 | void disable_interrupts() { |
---|
223 | with( kernelTLS.preemption_state ) { |
---|
224 | #if GCC_VERSION > 50000 |
---|
225 | static_assert(__atomic_always_lock_free(sizeof(enabled), &enabled), "Must be lock-free"); |
---|
226 | #endif |
---|
227 | |
---|
228 | // Set enabled flag to false |
---|
229 | // should be atomic to avoid preemption in the middle of the operation. |
---|
230 | // use memory order RELAXED since there is no inter-thread on this variable requirements |
---|
231 | __atomic_store_n(&enabled, false, __ATOMIC_RELAXED); |
---|
232 | |
---|
233 | // Signal the compiler that a fence is needed but only for signal handlers |
---|
234 | __atomic_signal_fence(__ATOMIC_ACQUIRE); |
---|
235 | |
---|
236 | __attribute__((unused)) unsigned short new_val = disable_count + 1; |
---|
237 | disable_count = new_val; |
---|
238 | verify( new_val < 65_000u ); // If this triggers someone is disabling interrupts without enabling them |
---|
239 | } |
---|
240 | } |
---|
241 | |
---|
242 | // Enable interrupts by decrementing the counter |
---|
243 | // If counter reaches 0, execute any pending __cfactx_switch |
---|
244 | void enable_interrupts( __cfaabi_dbg_ctx_param ) { |
---|
245 | processor * proc = kernelTLS.this_processor; // Cache the processor now since interrupts can start happening after the atomic store |
---|
246 | /* paranoid */ verify( proc ); |
---|
247 | |
---|
248 | with( kernelTLS.preemption_state ){ |
---|
249 | unsigned short prev = disable_count; |
---|
250 | disable_count -= 1; |
---|
251 | verify( prev != 0u ); // If this triggers someone is enabled already enabled interruptsverify( prev != 0u ); |
---|
252 | |
---|
253 | // Check if we need to prempt the thread because an interrupt was missed |
---|
254 | if( prev == 1 ) { |
---|
255 | #if GCC_VERSION > 50000 |
---|
256 | static_assert(__atomic_always_lock_free(sizeof(enabled), &enabled), "Must be lock-free"); |
---|
257 | #endif |
---|
258 | |
---|
259 | // Set enabled flag to true |
---|
260 | // should be atomic to avoid preemption in the middle of the operation. |
---|
261 | // use memory order RELAXED since there is no inter-thread on this variable requirements |
---|
262 | __atomic_store_n(&enabled, true, __ATOMIC_RELAXED); |
---|
263 | |
---|
264 | // Signal the compiler that a fence is needed but only for signal handlers |
---|
265 | __atomic_signal_fence(__ATOMIC_RELEASE); |
---|
266 | if( proc->pending_preemption ) { |
---|
267 | proc->pending_preemption = false; |
---|
268 | force_yield( __POLL_PREEMPTION ); |
---|
269 | } |
---|
270 | } |
---|
271 | } |
---|
272 | |
---|
273 | // For debugging purposes : keep track of the last person to enable the interrupts |
---|
274 | __cfaabi_dbg_debug_do( proc->last_enable = caller; ) |
---|
275 | } |
---|
276 | |
---|
277 | // Disable interrupts by incrementint the counter |
---|
278 | // Don't execute any pending __cfactx_switch even if counter reaches 0 |
---|
279 | void enable_interrupts_noPoll() { |
---|
280 | unsigned short prev = kernelTLS.preemption_state.disable_count; |
---|
281 | kernelTLS.preemption_state.disable_count -= 1; |
---|
282 | verifyf( prev != 0u, "Incremented from %u\n", prev ); // If this triggers someone is enabled already enabled interrupts |
---|
283 | if( prev == 1 ) { |
---|
284 | #if GCC_VERSION > 50000 |
---|
285 | static_assert(__atomic_always_lock_free(sizeof(kernelTLS.preemption_state.enabled), &kernelTLS.preemption_state.enabled), "Must be lock-free"); |
---|
286 | #endif |
---|
287 | // Set enabled flag to true |
---|
288 | // should be atomic to avoid preemption in the middle of the operation. |
---|
289 | // use memory order RELAXED since there is no inter-thread on this variable requirements |
---|
290 | __atomic_store_n(&kernelTLS.preemption_state.enabled, true, __ATOMIC_RELAXED); |
---|
291 | |
---|
292 | // Signal the compiler that a fence is needed but only for signal handlers |
---|
293 | __atomic_signal_fence(__ATOMIC_RELEASE); |
---|
294 | } |
---|
295 | } |
---|
296 | } |
---|
297 | |
---|
298 | // sigprocmask wrapper : unblock a single signal |
---|
299 | static inline void signal_unblock( int sig ) { |
---|
300 | sigset_t mask; |
---|
301 | sigemptyset( &mask ); |
---|
302 | sigaddset( &mask, sig ); |
---|
303 | |
---|
304 | if ( pthread_sigmask( SIG_UNBLOCK, &mask, 0p ) == -1 ) { |
---|
305 | abort( "internal error, pthread_sigmask" ); |
---|
306 | } |
---|
307 | } |
---|
308 | |
---|
309 | // sigprocmask wrapper : block a single signal |
---|
310 | static inline void signal_block( int sig ) { |
---|
311 | sigset_t mask; |
---|
312 | sigemptyset( &mask ); |
---|
313 | sigaddset( &mask, sig ); |
---|
314 | |
---|
315 | if ( pthread_sigmask( SIG_BLOCK, &mask, 0p ) == -1 ) { |
---|
316 | abort( "internal error, pthread_sigmask" ); |
---|
317 | } |
---|
318 | } |
---|
319 | |
---|
320 | // kill wrapper : signal a processor |
---|
321 | static void preempt( processor * this ) { |
---|
322 | sigval_t value = { PREEMPT_NORMAL }; |
---|
323 | pthread_sigqueue( this->kernel_thread, SIGUSR1, value ); |
---|
324 | } |
---|
325 | |
---|
326 | // reserved for future use |
---|
327 | static void timeout( $thread * this ) { |
---|
328 | #if !defined( __CFA_NO_STATISTICS__ ) |
---|
329 | kernelTLS.this_stats = this->curr_cluster->stats; |
---|
330 | #endif |
---|
331 | unpark( this ); |
---|
332 | } |
---|
333 | |
---|
334 | // KERNEL ONLY |
---|
335 | // Check if a __cfactx_switch signal handler shoud defer |
---|
336 | // If true : preemption is safe |
---|
337 | // If false : preemption is unsafe and marked as pending |
---|
338 | static inline bool preemption_ready() { |
---|
339 | // Check if preemption is safe |
---|
340 | bool ready = kernelTLS.preemption_state.enabled && ! kernelTLS.preemption_state.in_progress; |
---|
341 | |
---|
342 | // Adjust the pending flag accordingly |
---|
343 | kernelTLS.this_processor->pending_preemption = !ready; |
---|
344 | return ready; |
---|
345 | } |
---|
346 | |
---|
347 | //============================================================================================= |
---|
348 | // Kernel Signal Startup/Shutdown logic |
---|
349 | //============================================================================================= |
---|
350 | |
---|
351 | // Startup routine to activate preemption |
---|
352 | // Called from kernel_startup |
---|
353 | void __kernel_alarm_startup() { |
---|
354 | __cfaabi_dbg_print_safe( "Kernel : Starting preemption\n" ); |
---|
355 | |
---|
356 | // Start with preemption disabled until ready |
---|
357 | kernelTLS.preemption_state.enabled = false; |
---|
358 | kernelTLS.preemption_state.disable_count = 1; |
---|
359 | |
---|
360 | // Initialize the event kernel |
---|
361 | event_kernel = (event_kernel_t *)&storage_event_kernel; |
---|
362 | (*event_kernel){}; |
---|
363 | |
---|
364 | // Setup proper signal handlers |
---|
365 | __cfaabi_sigaction( SIGUSR1, sigHandler_ctxSwitch, SA_SIGINFO | SA_RESTART ); // __cfactx_switch handler |
---|
366 | __cfaabi_sigaction( SIGALRM, sigHandler_alarm , SA_SIGINFO | SA_RESTART ); // debug handler |
---|
367 | |
---|
368 | signal_block( SIGALRM ); |
---|
369 | |
---|
370 | alarm_stack = __create_pthread( &alarm_thread, alarm_loop, 0p ); |
---|
371 | } |
---|
372 | |
---|
373 | // Shutdown routine to deactivate preemption |
---|
374 | // Called from kernel_shutdown |
---|
375 | void __kernel_alarm_shutdown() { |
---|
376 | __cfaabi_dbg_print_safe( "Kernel : Preemption stopping\n" ); |
---|
377 | |
---|
378 | // Block all signals since we are already shutting down |
---|
379 | sigset_t mask; |
---|
380 | sigfillset( &mask ); |
---|
381 | sigprocmask( SIG_BLOCK, &mask, 0p ); |
---|
382 | |
---|
383 | // Notify the alarm thread of the shutdown |
---|
384 | sigval val = { 1 }; |
---|
385 | pthread_sigqueue( alarm_thread, SIGALRM, val ); |
---|
386 | |
---|
387 | // Wait for the preemption thread to finish |
---|
388 | |
---|
389 | pthread_join( alarm_thread, 0p ); |
---|
390 | free( alarm_stack ); |
---|
391 | |
---|
392 | // Preemption is now fully stopped |
---|
393 | |
---|
394 | __cfaabi_dbg_print_safe( "Kernel : Preemption stopped\n" ); |
---|
395 | } |
---|
396 | |
---|
397 | // Raii ctor/dtor for the preemption_scope |
---|
398 | // Used by thread to control when they want to receive preemption signals |
---|
399 | void ?{}( preemption_scope & this, processor * proc ) { |
---|
400 | (this.alarm){ proc, (Time){ 0 }, 0`s }; |
---|
401 | this.proc = proc; |
---|
402 | this.proc->preemption_alarm = &this.alarm; |
---|
403 | |
---|
404 | update_preemption( this.proc, this.proc->cltr->preemption_rate ); |
---|
405 | } |
---|
406 | |
---|
407 | void ^?{}( preemption_scope & this ) { |
---|
408 | disable_interrupts(); |
---|
409 | |
---|
410 | update_preemption( this.proc, 0`s ); |
---|
411 | } |
---|
412 | |
---|
413 | //============================================================================================= |
---|
414 | // Kernel Signal Handlers |
---|
415 | //============================================================================================= |
---|
416 | |
---|
417 | // Context switch signal handler |
---|
418 | // Receives SIGUSR1 signal and causes the current thread to yield |
---|
419 | static void sigHandler_ctxSwitch( __CFA_SIGPARMS__ ) { |
---|
420 | __cfaabi_dbg_debug_do( last_interrupt = (void *)(cxt->uc_mcontext.CFA_REG_IP); ) |
---|
421 | |
---|
422 | // SKULLDUGGERY: if a thread creates a processor and the immediately deletes it, |
---|
423 | // the interrupt that is supposed to force the kernel thread to preempt might arrive |
---|
424 | // before the kernel thread has even started running. When that happens, an interrupt |
---|
425 | // with a null 'this_processor' will be caught, just ignore it. |
---|
426 | if(! kernelTLS.this_processor ) return; |
---|
427 | |
---|
428 | choose(sfp->si_value.sival_int) { |
---|
429 | case PREEMPT_NORMAL : ;// Normal case, nothing to do here |
---|
430 | case PREEMPT_TERMINATE: verify( __atomic_load_n( &kernelTLS.this_processor->do_terminate, __ATOMIC_SEQ_CST ) ); |
---|
431 | default: |
---|
432 | abort( "internal error, signal value is %d", sfp->si_value.sival_int ); |
---|
433 | } |
---|
434 | |
---|
435 | // Check if it is safe to preempt here |
---|
436 | if( !preemption_ready() ) { return; } |
---|
437 | |
---|
438 | __cfaabi_dbg_print_buffer_decl( " KERNEL: preempting core %p (%p @ %p).\n", kernelTLS.this_processor, kernelTLS.this_thread, (void *)(cxt->uc_mcontext.CFA_REG_IP) ); |
---|
439 | |
---|
440 | // Sync flag : prevent recursive calls to the signal handler |
---|
441 | kernelTLS.preemption_state.in_progress = true; |
---|
442 | |
---|
443 | // Clear sighandler mask before context switching. |
---|
444 | #if GCC_VERSION > 50000 |
---|
445 | static_assert( sizeof( sigset_t ) == sizeof( cxt->uc_sigmask ), "Expected cxt->uc_sigmask to be of sigset_t" ); |
---|
446 | #endif |
---|
447 | if ( pthread_sigmask( SIG_SETMASK, (sigset_t *)&(cxt->uc_sigmask), 0p ) == -1 ) { |
---|
448 | abort( "internal error, sigprocmask" ); |
---|
449 | } |
---|
450 | |
---|
451 | // TODO: this should go in finish action |
---|
452 | // Clear the in progress flag |
---|
453 | kernelTLS.preemption_state.in_progress = false; |
---|
454 | |
---|
455 | // Preemption can occur here |
---|
456 | |
---|
457 | force_yield( __ALARM_PREEMPTION ); // Do the actual __cfactx_switch |
---|
458 | } |
---|
459 | |
---|
460 | static void sigHandler_alarm( __CFA_SIGPARMS__ ) { |
---|
461 | abort("SIGALRM should never reach the signal handler"); |
---|
462 | } |
---|
463 | |
---|
464 | // Main of the alarm thread |
---|
465 | // Waits on SIGALRM and send SIGUSR1 to whom ever needs it |
---|
466 | static void * alarm_loop( __attribute__((unused)) void * args ) { |
---|
467 | __processor_id_t id; |
---|
468 | id.full_proc = false; |
---|
469 | id.id = doregister(&id); |
---|
470 | kernelTLS.this_proc_id = &id; |
---|
471 | |
---|
472 | // Block sigalrms to control when they arrive |
---|
473 | sigset_t mask; |
---|
474 | sigfillset(&mask); |
---|
475 | if ( pthread_sigmask( SIG_BLOCK, &mask, 0p ) == -1 ) { |
---|
476 | abort( "internal error, pthread_sigmask" ); |
---|
477 | } |
---|
478 | |
---|
479 | sigemptyset( &mask ); |
---|
480 | sigaddset( &mask, SIGALRM ); |
---|
481 | |
---|
482 | // Main loop |
---|
483 | while( true ) { |
---|
484 | // Wait for a sigalrm |
---|
485 | siginfo_t info; |
---|
486 | int sig = sigwaitinfo( &mask, &info ); |
---|
487 | |
---|
488 | if( sig < 0 ) { |
---|
489 | //Error! |
---|
490 | int err = errno; |
---|
491 | switch( err ) { |
---|
492 | case EAGAIN : |
---|
493 | case EINTR : |
---|
494 | {__cfaabi_dbg_print_buffer_decl( " KERNEL: Spurious wakeup %d.\n", err );} |
---|
495 | continue; |
---|
496 | case EINVAL : |
---|
497 | abort( "Timeout was invalid." ); |
---|
498 | default: |
---|
499 | abort( "Unhandled error %d", err); |
---|
500 | } |
---|
501 | } |
---|
502 | |
---|
503 | // If another signal arrived something went wrong |
---|
504 | assertf(sig == SIGALRM, "Kernel Internal Error, sigwait: Unexpected signal %d (%d : %d)\n", sig, info.si_code, info.si_value.sival_int); |
---|
505 | |
---|
506 | // __cfaabi_dbg_print_safe( "Kernel : Caught alarm from %d with %d\n", info.si_code, info.si_value.sival_int ); |
---|
507 | // Switch on the code (a.k.a. the sender) to |
---|
508 | switch( info.si_code ) |
---|
509 | { |
---|
510 | // Timers can apparently be marked as sent for the kernel |
---|
511 | // In either case, tick preemption |
---|
512 | case SI_TIMER: |
---|
513 | case SI_KERNEL: |
---|
514 | // __cfaabi_dbg_print_safe( "Kernel : Preemption thread tick\n" ); |
---|
515 | lock( event_kernel->lock __cfaabi_dbg_ctx2 ); |
---|
516 | tick_preemption(); |
---|
517 | unlock( event_kernel->lock ); |
---|
518 | break; |
---|
519 | // Signal was not sent by the kernel but by an other thread |
---|
520 | case SI_QUEUE: |
---|
521 | // For now, other thread only signal the alarm thread to shut it down |
---|
522 | // If this needs to change use info.si_value and handle the case here |
---|
523 | goto EXIT; |
---|
524 | } |
---|
525 | } |
---|
526 | |
---|
527 | EXIT: |
---|
528 | __cfaabi_dbg_print_safe( "Kernel : Preemption thread stopping\n" ); |
---|
529 | unregister(&id); |
---|
530 | return 0p; |
---|
531 | } |
---|
532 | |
---|
533 | //============================================================================================= |
---|
534 | // Kernel Signal Debug |
---|
535 | //============================================================================================= |
---|
536 | |
---|
537 | void __cfaabi_check_preemption() { |
---|
538 | bool ready = kernelTLS.preemption_state.enabled; |
---|
539 | if(!ready) { abort("Preemption should be ready"); } |
---|
540 | |
---|
541 | sigset_t oldset; |
---|
542 | int ret; |
---|
543 | ret = pthread_sigmask(0, ( const sigset_t * ) 0p, &oldset); // workaround trac#208: cast should be unnecessary |
---|
544 | if(ret != 0) { abort("ERROR sigprocmask returned %d", ret); } |
---|
545 | |
---|
546 | ret = sigismember(&oldset, SIGUSR1); |
---|
547 | if(ret < 0) { abort("ERROR sigismember returned %d", ret); } |
---|
548 | if(ret == 1) { abort("ERROR SIGUSR1 is disabled"); } |
---|
549 | |
---|
550 | ret = sigismember(&oldset, SIGALRM); |
---|
551 | if(ret < 0) { abort("ERROR sigismember returned %d", ret); } |
---|
552 | if(ret == 0) { abort("ERROR SIGALRM is enabled"); } |
---|
553 | |
---|
554 | ret = sigismember(&oldset, SIGTERM); |
---|
555 | if(ret < 0) { abort("ERROR sigismember returned %d", ret); } |
---|
556 | if(ret == 1) { abort("ERROR SIGTERM is disabled"); } |
---|
557 | } |
---|
558 | |
---|
559 | #ifdef __CFA_WITH_VERIFY__ |
---|
560 | bool __cfaabi_dbg_in_kernel() { |
---|
561 | return !kernelTLS.preemption_state.enabled; |
---|
562 | } |
---|
563 | #endif |
---|
564 | |
---|
565 | // Local Variables: // |
---|
566 | // mode: c // |
---|
567 | // tab-width: 4 // |
---|
568 | // End: // |
---|