source: libcfa/src/concurrency/kernel.cfa@ e8e457e

ADT arm-eh ast-experimental cleanup-dtors enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr pthread-emulation qualifiedEnum
Last change on this file since e8e457e was e8e457e, checked in by tdelisle <tdelisle@…>, 7 years ago

Thread context is now distinct from coroutine context

  • Property mode set to 100644
File size: 24.6 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// kernel.c --
8//
9// Author : Thierry Delisle
10// Created On : Tue Jan 17 12:27:26 2017
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Mon Apr 9 16:11:46 2018
13// Update Count : 24
14//
15
16//C Includes
17#include <stddef.h>
18#include <errno.h>
19#include <string.h>
20extern "C" {
21#include <stdio.h>
22#include <fenv.h>
23#include <sys/resource.h>
24#include <signal.h>
25#include <unistd.h>
26}
27
28//CFA Includes
29#include "time.hfa"
30#include "kernel_private.hfa"
31#include "preemption.hfa"
32#include "startup.hfa"
33
34//Private includes
35#define __CFA_INVOKE_PRIVATE__
36#include "invoke.h"
37
38//Start and stop routine for the kernel, declared first to make sure they run first
39static void kernel_startup(void) __attribute__(( constructor( STARTUP_PRIORITY_KERNEL ) ));
40static void kernel_shutdown(void) __attribute__(( destructor ( STARTUP_PRIORITY_KERNEL ) ));
41
42//-----------------------------------------------------------------------------
43// Kernel storage
44KERNEL_STORAGE(cluster, mainCluster);
45KERNEL_STORAGE(processor, mainProcessor);
46KERNEL_STORAGE(thread_desc, mainThread);
47KERNEL_STORAGE(__stack_t, mainThreadCtx);
48
49cluster * mainCluster;
50processor * mainProcessor;
51thread_desc * mainThread;
52
53extern "C" {
54struct { __dllist_t(cluster) list; __spinlock_t lock; } __cfa_dbg_global_clusters;
55}
56
57size_t __page_size = 0;
58
59//-----------------------------------------------------------------------------
60// Global state
61thread_local struct KernelThreadData kernelTLS __attribute__ ((tls_model ( "initial-exec" ))) = {
62 NULL,
63 NULL,
64 { 1, false, false }
65};
66
67//-----------------------------------------------------------------------------
68// Struct to steal stack
69struct current_stack_info_t {
70 __stack_t * storage; // pointer to stack object
71 void *base; // base of stack
72 void *limit; // stack grows towards stack limit
73 void *context; // address of cfa_context_t
74};
75
76void ?{}( current_stack_info_t & this ) {
77 __stack_context_t ctx;
78 CtxGet( ctx );
79 this.base = ctx.FP;
80
81 rlimit r;
82 getrlimit( RLIMIT_STACK, &r);
83 size_t size = r.rlim_cur;
84
85 this.limit = (void *)(((intptr_t)this.base) - size);
86 this.context = &storage_mainThreadCtx;
87}
88
89//-----------------------------------------------------------------------------
90// Main thread construction
91
92void ?{}( coroutine_desc & this, current_stack_info_t * info) with( this ) {
93 context.errno_ = 0;
94 stack.storage = info->storage;
95 with(*stack.storage) {
96 limit = info->limit;
97 base = info->base;
98 }
99 *((intptr_t*)&stack.storage) |= 0x1;
100 name = "Main Thread";
101 state = Start;
102 starter = NULL;
103 last = NULL;
104 cancellation = NULL;
105}
106
107void ?{}( thread_desc & this, current_stack_info_t * info) with( this ) {
108 state = Start;
109 self_cor{ info };
110 curr_cor = &self_cor;
111 curr_cluster = mainCluster;
112 self_mon.owner = &this;
113 self_mon.recursion = 1;
114 self_mon_p = &self_mon;
115 next = NULL;
116
117 node.next = NULL;
118 node.prev = NULL;
119 doregister(curr_cluster, this);
120
121 monitors{ &self_mon_p, 1, (fptr_t)0 };
122}
123
124//-----------------------------------------------------------------------------
125// Processor coroutine
126void ?{}(processorCtx_t & this) {
127
128}
129
130// Construct the processor context of non-main processors
131static void ?{}(processorCtx_t & this, processor * proc, current_stack_info_t * info) {
132 (this.__cor){ info };
133 this.proc = proc;
134}
135
136static void start(processor * this);
137void ?{}(processor & this, const char * name, cluster & cltr) with( this ) {
138 this.name = name;
139 this.cltr = &cltr;
140 terminated{ 0 };
141 do_terminate = false;
142 preemption_alarm = NULL;
143 pending_preemption = false;
144 runner.proc = &this;
145
146 idleLock{};
147
148 start( &this );
149}
150
151void ^?{}(processor & this) with( this ){
152 if( ! __atomic_load_n(&do_terminate, __ATOMIC_ACQUIRE) ) {
153 __cfaabi_dbg_print_safe("Kernel : core %p signaling termination\n", &this);
154
155 __atomic_store_n(&do_terminate, true, __ATOMIC_RELAXED);
156 wake( &this );
157
158 P( terminated );
159 verify( kernelTLS.this_processor != &this);
160 }
161
162 pthread_join( kernel_thread, NULL );
163}
164
165void ?{}(cluster & this, const char * name, Duration preemption_rate) with( this ) {
166 this.name = name;
167 this.preemption_rate = preemption_rate;
168 ready_queue{};
169 ready_queue_lock{};
170
171 procs{ __get };
172 idles{ __get };
173 threads{ __get };
174
175 doregister(this);
176}
177
178void ^?{}(cluster & this) {
179 unregister(this);
180}
181
182//=============================================================================================
183// Kernel Scheduling logic
184//=============================================================================================
185static void runThread(processor * this, thread_desc * dst);
186static void finishRunning(processor * this);
187static void halt(processor * this);
188
189//Main of the processor contexts
190void main(processorCtx_t & runner) {
191 processor * this = runner.proc;
192 verify(this);
193
194 __cfaabi_dbg_print_safe("Kernel : core %p starting\n", this);
195
196 doregister(this->cltr, this);
197
198 {
199 // Setup preemption data
200 preemption_scope scope = { this };
201
202 __cfaabi_dbg_print_safe("Kernel : core %p started\n", this);
203
204 thread_desc * readyThread = NULL;
205 for( unsigned int spin_count = 0; ! __atomic_load_n(&this->do_terminate, __ATOMIC_SEQ_CST); spin_count++ )
206 {
207 readyThread = nextThread( this->cltr );
208
209 if(readyThread)
210 {
211 verify( ! kernelTLS.preemption_state.enabled );
212
213 runThread(this, readyThread);
214
215 verify( ! kernelTLS.preemption_state.enabled );
216
217 //Some actions need to be taken from the kernel
218 finishRunning(this);
219
220 spin_count = 0;
221 }
222 else
223 {
224 // spin(this, &spin_count);
225 halt(this);
226 }
227 }
228
229 __cfaabi_dbg_print_safe("Kernel : core %p stopping\n", this);
230 }
231
232 unregister(this->cltr, this);
233
234 V( this->terminated );
235
236 __cfaabi_dbg_print_safe("Kernel : core %p terminated\n", this);
237}
238
239// KERNEL ONLY
240// runThread runs a thread by context switching
241// from the processor coroutine to the target thread
242static void runThread(processor * this, thread_desc * thrd_dst) {
243 coroutine_desc * proc_cor = get_coroutine(this->runner);
244
245 // Reset the terminating actions here
246 this->finish.action_code = No_Action;
247
248 // Update global state
249 kernelTLS.this_thread = thrd_dst;
250
251 // set state of processor coroutine to inactive and the thread to active
252 proc_cor->state = proc_cor->state == Halted ? Halted : Inactive;
253 thrd_dst->state = Active;
254
255 // set context switch to the thread that the processor is executing
256 verify( thrd_dst->context.SP );
257 CtxSwitch( &proc_cor->context, &thrd_dst->context );
258 // when CtxSwitch returns we are back in the processor coroutine
259
260 // set state of processor coroutine to active and the thread to inactive
261 thrd_dst->state = thrd_dst->state == Halted ? Halted : Inactive;
262 proc_cor->state = Active;
263}
264
265// KERNEL_ONLY
266static void returnToKernel() {
267 coroutine_desc * proc_cor = get_coroutine(kernelTLS.this_processor->runner);
268 thread_desc * thrd_src = kernelTLS.this_thread;
269
270 // set state of current coroutine to inactive
271 thrd_src->state = thrd_src->state == Halted ? Halted : Inactive;
272 proc_cor->state = Active;
273
274 // set new coroutine that the processor is executing
275 // and context switch to it
276 verify( proc_cor->context.SP );
277 CtxSwitch( &thrd_src->context, &proc_cor->context );
278
279 // set state of new coroutine to active
280 proc_cor->state = proc_cor->state == Halted ? Halted : Inactive;
281 thrd_src->state = Active;
282}
283
284// KERNEL_ONLY
285// Once a thread has finished running, some of
286// its final actions must be executed from the kernel
287static void finishRunning(processor * this) with( this->finish ) {
288 verify( ! kernelTLS.preemption_state.enabled );
289 choose( action_code ) {
290 case No_Action:
291 break;
292 case Release:
293 unlock( *lock );
294 case Schedule:
295 ScheduleThread( thrd );
296 case Release_Schedule:
297 unlock( *lock );
298 ScheduleThread( thrd );
299 case Release_Multi:
300 for(int i = 0; i < lock_count; i++) {
301 unlock( *locks[i] );
302 }
303 case Release_Multi_Schedule:
304 for(int i = 0; i < lock_count; i++) {
305 unlock( *locks[i] );
306 }
307 for(int i = 0; i < thrd_count; i++) {
308 ScheduleThread( thrds[i] );
309 }
310 case Callback:
311 callback();
312 default:
313 abort("KERNEL ERROR: Unexpected action to run after thread");
314 }
315}
316
317// KERNEL_ONLY
318// Context invoker for processors
319// This is the entry point for processors (kernel threads)
320// It effectively constructs a coroutine by stealing the pthread stack
321static void * CtxInvokeProcessor(void * arg) {
322 processor * proc = (processor *) arg;
323 kernelTLS.this_processor = proc;
324 kernelTLS.this_thread = NULL;
325 kernelTLS.preemption_state.[enabled, disable_count] = [false, 1];
326 // SKULLDUGGERY: We want to create a context for the processor coroutine
327 // which is needed for the 2-step context switch. However, there is no reason
328 // to waste the perfectly valid stack create by pthread.
329 current_stack_info_t info;
330 __stack_t ctx;
331 info.storage = &ctx;
332 (proc->runner){ proc, &info };
333
334 __cfaabi_dbg_print_safe("Coroutine : created stack %p\n", get_coroutine(proc->runner)->stack.storage);
335
336 //Set global state
337 kernelTLS.this_thread = NULL;
338
339 //We now have a proper context from which to schedule threads
340 __cfaabi_dbg_print_safe("Kernel : core %p created (%p, %p)\n", proc, &proc->runner, &ctx);
341
342 // SKULLDUGGERY: Since the coroutine doesn't have its own stack, we can't
343 // resume it to start it like it normally would, it will just context switch
344 // back to here. Instead directly call the main since we already are on the
345 // appropriate stack.
346 get_coroutine(proc->runner)->state = Active;
347 main( proc->runner );
348 get_coroutine(proc->runner)->state = Halted;
349
350 // Main routine of the core returned, the core is now fully terminated
351 __cfaabi_dbg_print_safe("Kernel : core %p main ended (%p)\n", proc, &proc->runner);
352
353 return NULL;
354}
355
356static void start(processor * this) {
357 __cfaabi_dbg_print_safe("Kernel : Starting core %p\n", this);
358
359 pthread_create( &this->kernel_thread, NULL, CtxInvokeProcessor, (void*)this );
360
361 __cfaabi_dbg_print_safe("Kernel : core %p started\n", this);
362}
363
364// KERNEL_ONLY
365void kernel_first_resume( processor * this ) {
366 thread_desc * src = mainThread;
367 coroutine_desc * dst = get_coroutine(this->runner);
368
369 verify( ! kernelTLS.preemption_state.enabled );
370
371 __stack_prepare( &dst->stack, 65000 );
372 CtxStart(&this->runner, CtxInvokeCoroutine);
373
374 verify( ! kernelTLS.preemption_state.enabled );
375
376 dst->last = &src->self_cor;
377 dst->starter = dst->starter ? dst->starter : &src->self_cor;
378
379 // set state of current coroutine to inactive
380 src->state = src->state == Halted ? Halted : Inactive;
381
382 // SKULLDUGGERY normally interrupts are enable before leaving a coroutine ctxswitch.
383 // Therefore, when first creating a coroutine, interrupts are enable before calling the main.
384 // This is consistent with thread creation. However, when creating the main processor coroutine,
385 // we wan't interrupts to be disabled. Therefore, we double-disable interrupts here so they will
386 // stay disabled.
387 disable_interrupts();
388
389 // context switch to specified coroutine
390 verify( dst->context.SP );
391 CtxSwitch( &src->context, &dst->context );
392 // when CtxSwitch returns we are back in the src coroutine
393
394 // set state of new coroutine to active
395 src->state = Active;
396
397 verify( ! kernelTLS.preemption_state.enabled );
398}
399
400// KERNEL_ONLY
401void kernel_last_resume( processor * this ) {
402 coroutine_desc * src = &mainThread->self_cor;
403 coroutine_desc * dst = get_coroutine(this->runner);
404
405 verify( ! kernelTLS.preemption_state.enabled );
406 verify( dst->starter == src );
407 verify( dst->context.SP );
408
409 // context switch to the processor
410 CtxSwitch( &src->context, &dst->context );
411}
412
413//-----------------------------------------------------------------------------
414// Scheduler routines
415
416// KERNEL ONLY
417void ScheduleThread( thread_desc * thrd ) {
418 verify( thrd );
419 verify( thrd->state != Halted );
420
421 verify( ! kernelTLS.preemption_state.enabled );
422
423 verifyf( thrd->next == NULL, "Expected null got %p", thrd->next );
424
425 with( *thrd->curr_cluster ) {
426 lock ( ready_queue_lock __cfaabi_dbg_ctx2 );
427 bool was_empty = !(ready_queue != 0);
428 append( ready_queue, thrd );
429 unlock( ready_queue_lock );
430
431 if(was_empty) {
432 lock (proc_list_lock __cfaabi_dbg_ctx2);
433 if(idles) {
434 wake_fast(idles.head);
435 }
436 unlock (proc_list_lock);
437 }
438 else if( struct processor * idle = idles.head ) {
439 wake_fast(idle);
440 }
441
442 }
443
444 verify( ! kernelTLS.preemption_state.enabled );
445}
446
447// KERNEL ONLY
448thread_desc * nextThread(cluster * this) with( *this ) {
449 verify( ! kernelTLS.preemption_state.enabled );
450 lock( ready_queue_lock __cfaabi_dbg_ctx2 );
451 thread_desc * head = pop_head( ready_queue );
452 unlock( ready_queue_lock );
453 verify( ! kernelTLS.preemption_state.enabled );
454 return head;
455}
456
457void BlockInternal() {
458 disable_interrupts();
459 verify( ! kernelTLS.preemption_state.enabled );
460 returnToKernel();
461 verify( ! kernelTLS.preemption_state.enabled );
462 enable_interrupts( __cfaabi_dbg_ctx );
463}
464
465void BlockInternal( __spinlock_t * lock ) {
466 disable_interrupts();
467 with( *kernelTLS.this_processor ) {
468 finish.action_code = Release;
469 finish.lock = lock;
470 }
471
472 verify( ! kernelTLS.preemption_state.enabled );
473 returnToKernel();
474 verify( ! kernelTLS.preemption_state.enabled );
475
476 enable_interrupts( __cfaabi_dbg_ctx );
477}
478
479void BlockInternal( thread_desc * thrd ) {
480 disable_interrupts();
481 with( * kernelTLS.this_processor ) {
482 finish.action_code = Schedule;
483 finish.thrd = thrd;
484 }
485
486 verify( ! kernelTLS.preemption_state.enabled );
487 returnToKernel();
488 verify( ! kernelTLS.preemption_state.enabled );
489
490 enable_interrupts( __cfaabi_dbg_ctx );
491}
492
493void BlockInternal( __spinlock_t * lock, thread_desc * thrd ) {
494 assert(thrd);
495 disable_interrupts();
496 with( * kernelTLS.this_processor ) {
497 finish.action_code = Release_Schedule;
498 finish.lock = lock;
499 finish.thrd = thrd;
500 }
501
502 verify( ! kernelTLS.preemption_state.enabled );
503 returnToKernel();
504 verify( ! kernelTLS.preemption_state.enabled );
505
506 enable_interrupts( __cfaabi_dbg_ctx );
507}
508
509void BlockInternal(__spinlock_t * locks [], unsigned short count) {
510 disable_interrupts();
511 with( * kernelTLS.this_processor ) {
512 finish.action_code = Release_Multi;
513 finish.locks = locks;
514 finish.lock_count = count;
515 }
516
517 verify( ! kernelTLS.preemption_state.enabled );
518 returnToKernel();
519 verify( ! kernelTLS.preemption_state.enabled );
520
521 enable_interrupts( __cfaabi_dbg_ctx );
522}
523
524void BlockInternal(__spinlock_t * locks [], unsigned short lock_count, thread_desc * thrds [], unsigned short thrd_count) {
525 disable_interrupts();
526 with( *kernelTLS.this_processor ) {
527 finish.action_code = Release_Multi_Schedule;
528 finish.locks = locks;
529 finish.lock_count = lock_count;
530 finish.thrds = thrds;
531 finish.thrd_count = thrd_count;
532 }
533
534 verify( ! kernelTLS.preemption_state.enabled );
535 returnToKernel();
536 verify( ! kernelTLS.preemption_state.enabled );
537
538 enable_interrupts( __cfaabi_dbg_ctx );
539}
540
541void BlockInternal(__finish_callback_fptr_t callback) {
542 disable_interrupts();
543 with( *kernelTLS.this_processor ) {
544 finish.action_code = Callback;
545 finish.callback = callback;
546 }
547
548 verify( ! kernelTLS.preemption_state.enabled );
549 returnToKernel();
550 verify( ! kernelTLS.preemption_state.enabled );
551
552 enable_interrupts( __cfaabi_dbg_ctx );
553}
554
555// KERNEL ONLY
556void LeaveThread(__spinlock_t * lock, thread_desc * thrd) {
557 verify( ! kernelTLS.preemption_state.enabled );
558 with( * kernelTLS.this_processor ) {
559 finish.action_code = thrd ? Release_Schedule : Release;
560 finish.lock = lock;
561 finish.thrd = thrd;
562 }
563
564 returnToKernel();
565}
566
567//=============================================================================================
568// Kernel Setup logic
569//=============================================================================================
570//-----------------------------------------------------------------------------
571// Kernel boot procedures
572static void kernel_startup(void) {
573 verify( ! kernelTLS.preemption_state.enabled );
574 __cfaabi_dbg_print_safe("Kernel : Starting\n");
575
576 __page_size = sysconf( _SC_PAGESIZE );
577
578 __cfa_dbg_global_clusters.list{ __get };
579 __cfa_dbg_global_clusters.lock{};
580
581 // Initialize the main cluster
582 mainCluster = (cluster *)&storage_mainCluster;
583 (*mainCluster){"Main Cluster"};
584
585 __cfaabi_dbg_print_safe("Kernel : Main cluster ready\n");
586
587 // Start by initializing the main thread
588 // SKULLDUGGERY: the mainThread steals the process main thread
589 // which will then be scheduled by the mainProcessor normally
590 mainThread = (thread_desc *)&storage_mainThread;
591 current_stack_info_t info;
592 info.storage = (__stack_t*)&storage_mainThreadCtx;
593 (*mainThread){ &info };
594
595 __cfaabi_dbg_print_safe("Kernel : Main thread ready\n");
596
597
598
599 // Construct the processor context of the main processor
600 void ?{}(processorCtx_t & this, processor * proc) {
601 (this.__cor){ "Processor" };
602 this.__cor.starter = NULL;
603 this.proc = proc;
604 }
605
606 void ?{}(processor & this) with( this ) {
607 name = "Main Processor";
608 cltr = mainCluster;
609 terminated{ 0 };
610 do_terminate = false;
611 preemption_alarm = NULL;
612 pending_preemption = false;
613 kernel_thread = pthread_self();
614
615 runner{ &this };
616 __cfaabi_dbg_print_safe("Kernel : constructed main processor context %p\n", &runner);
617 }
618
619 // Initialize the main processor and the main processor ctx
620 // (the coroutine that contains the processing control flow)
621 mainProcessor = (processor *)&storage_mainProcessor;
622 (*mainProcessor){};
623
624 //initialize the global state variables
625 kernelTLS.this_processor = mainProcessor;
626 kernelTLS.this_thread = mainThread;
627
628 // Enable preemption
629 kernel_start_preemption();
630
631 // Add the main thread to the ready queue
632 // once resume is called on mainProcessor->runner the mainThread needs to be scheduled like any normal thread
633 ScheduleThread(mainThread);
634
635 // SKULLDUGGERY: Force a context switch to the main processor to set the main thread's context to the current UNIX
636 // context. Hence, the main thread does not begin through CtxInvokeThread, like all other threads. The trick here is that
637 // mainThread is on the ready queue when this call is made.
638 kernel_first_resume( kernelTLS.this_processor );
639
640
641
642 // THE SYSTEM IS NOW COMPLETELY RUNNING
643 __cfaabi_dbg_print_safe("Kernel : Started\n--------------------------------------------------\n\n");
644
645 verify( ! kernelTLS.preemption_state.enabled );
646 enable_interrupts( __cfaabi_dbg_ctx );
647 verify( TL_GET( preemption_state.enabled ) );
648}
649
650static void kernel_shutdown(void) {
651 __cfaabi_dbg_print_safe("\n--------------------------------------------------\nKernel : Shutting down\n");
652
653 verify( TL_GET( preemption_state.enabled ) );
654 disable_interrupts();
655 verify( ! kernelTLS.preemption_state.enabled );
656
657 // SKULLDUGGERY: Notify the mainProcessor it needs to terminates.
658 // When its coroutine terminates, it return control to the mainThread
659 // which is currently here
660 __atomic_store_n(&mainProcessor->do_terminate, true, __ATOMIC_RELEASE);
661 kernel_last_resume( kernelTLS.this_processor );
662 mainThread->self_cor.state = Halted;
663
664 // THE SYSTEM IS NOW COMPLETELY STOPPED
665
666 // Disable preemption
667 kernel_stop_preemption();
668
669 // Destroy the main processor and its context in reverse order of construction
670 // These were manually constructed so we need manually destroy them
671 ^(mainProcessor->runner){};
672 ^(mainProcessor){};
673
674 // Final step, destroy the main thread since it is no longer needed
675 // Since we provided a stack to this taxk it will not destroy anything
676 ^(mainThread){};
677
678 ^(__cfa_dbg_global_clusters.list){};
679 ^(__cfa_dbg_global_clusters.lock){};
680
681 __cfaabi_dbg_print_safe("Kernel : Shutdown complete\n");
682}
683
684//=============================================================================================
685// Kernel Quiescing
686//=============================================================================================
687static void halt(processor * this) with( *this ) {
688 // verify( ! __atomic_load_n(&do_terminate, __ATOMIC_SEQ_CST) );
689
690 with( *cltr ) {
691 lock (proc_list_lock __cfaabi_dbg_ctx2);
692 remove (procs, *this);
693 push_front(idles, *this);
694 unlock (proc_list_lock);
695 }
696
697 __cfaabi_dbg_print_safe("Kernel : Processor %p ready to sleep\n", this);
698
699 wait( idleLock );
700
701 __cfaabi_dbg_print_safe("Kernel : Processor %p woke up and ready to run\n", this);
702
703 with( *cltr ) {
704 lock (proc_list_lock __cfaabi_dbg_ctx2);
705 remove (idles, *this);
706 push_front(procs, *this);
707 unlock (proc_list_lock);
708 }
709}
710
711//=============================================================================================
712// Unexpected Terminating logic
713//=============================================================================================
714static __spinlock_t kernel_abort_lock;
715static bool kernel_abort_called = false;
716
717void * kernel_abort(void) __attribute__ ((__nothrow__)) {
718 // abort cannot be recursively entered by the same or different processors because all signal handlers return when
719 // the globalAbort flag is true.
720 lock( kernel_abort_lock __cfaabi_dbg_ctx2 );
721
722 // first task to abort ?
723 if ( kernel_abort_called ) { // not first task to abort ?
724 unlock( kernel_abort_lock );
725
726 sigset_t mask;
727 sigemptyset( &mask );
728 sigaddset( &mask, SIGALRM ); // block SIGALRM signals
729 sigsuspend( &mask ); // block the processor to prevent further damage during abort
730 _exit( EXIT_FAILURE ); // if processor unblocks before it is killed, terminate it
731 }
732 else {
733 kernel_abort_called = true;
734 unlock( kernel_abort_lock );
735 }
736
737 return kernelTLS.this_thread;
738}
739
740void kernel_abort_msg( void * kernel_data, char * abort_text, int abort_text_size ) {
741 thread_desc * thrd = kernel_data;
742
743 if(thrd) {
744 int len = snprintf( abort_text, abort_text_size, "Error occurred while executing thread %.256s (%p)", thrd->self_cor.name, thrd );
745 __cfaabi_dbg_bits_write( abort_text, len );
746
747 if ( &thrd->self_cor != thrd->curr_cor ) {
748 len = snprintf( abort_text, abort_text_size, " in coroutine %.256s (%p).\n", thrd->curr_cor->name, thrd->curr_cor );
749 __cfaabi_dbg_bits_write( abort_text, len );
750 }
751 else {
752 __cfaabi_dbg_bits_write( ".\n", 2 );
753 }
754 }
755 else {
756 int len = snprintf( abort_text, abort_text_size, "Error occurred outside of any thread.\n" );
757 __cfaabi_dbg_bits_write( abort_text, len );
758 }
759}
760
761int kernel_abort_lastframe( void ) __attribute__ ((__nothrow__)) {
762 return get_coroutine(kernelTLS.this_thread) == get_coroutine(mainThread) ? 4 : 2;
763}
764
765static __spinlock_t kernel_debug_lock;
766
767extern "C" {
768 void __cfaabi_dbg_bits_acquire() {
769 lock( kernel_debug_lock __cfaabi_dbg_ctx2 );
770 }
771
772 void __cfaabi_dbg_bits_release() {
773 unlock( kernel_debug_lock );
774 }
775}
776
777//=============================================================================================
778// Kernel Utilities
779//=============================================================================================
780//-----------------------------------------------------------------------------
781// Locks
782void ?{}( semaphore & this, int count = 1 ) {
783 (this.lock){};
784 this.count = count;
785 (this.waiting){};
786}
787void ^?{}(semaphore & this) {}
788
789void P(semaphore & this) with( this ){
790 lock( lock __cfaabi_dbg_ctx2 );
791 count -= 1;
792 if ( count < 0 ) {
793 // queue current task
794 append( waiting, kernelTLS.this_thread );
795
796 // atomically release spin lock and block
797 BlockInternal( &lock );
798 }
799 else {
800 unlock( lock );
801 }
802}
803
804void V(semaphore & this) with( this ) {
805 thread_desc * thrd = NULL;
806 lock( lock __cfaabi_dbg_ctx2 );
807 count += 1;
808 if ( count <= 0 ) {
809 // remove task at head of waiting list
810 thrd = pop_head( waiting );
811 }
812
813 unlock( lock );
814
815 // make new owner
816 WakeThread( thrd );
817}
818
819//-----------------------------------------------------------------------------
820// Global Queues
821void doregister( cluster & cltr ) {
822 lock ( __cfa_dbg_global_clusters.lock __cfaabi_dbg_ctx2);
823 push_front( __cfa_dbg_global_clusters.list, cltr );
824 unlock ( __cfa_dbg_global_clusters.lock );
825}
826
827void unregister( cluster & cltr ) {
828 lock ( __cfa_dbg_global_clusters.lock __cfaabi_dbg_ctx2);
829 remove( __cfa_dbg_global_clusters.list, cltr );
830 unlock( __cfa_dbg_global_clusters.lock );
831}
832
833void doregister( cluster * cltr, thread_desc & thrd ) {
834 lock (cltr->thread_list_lock __cfaabi_dbg_ctx2);
835 push_front(cltr->threads, thrd);
836 unlock (cltr->thread_list_lock);
837}
838
839void unregister( cluster * cltr, thread_desc & thrd ) {
840 lock (cltr->thread_list_lock __cfaabi_dbg_ctx2);
841 remove(cltr->threads, thrd );
842 unlock(cltr->thread_list_lock);
843}
844
845void doregister( cluster * cltr, processor * proc ) {
846 lock (cltr->proc_list_lock __cfaabi_dbg_ctx2);
847 push_front(cltr->procs, *proc);
848 unlock (cltr->proc_list_lock);
849}
850
851void unregister( cluster * cltr, processor * proc ) {
852 lock (cltr->proc_list_lock __cfaabi_dbg_ctx2);
853 remove(cltr->procs, *proc );
854 unlock(cltr->proc_list_lock);
855}
856
857//-----------------------------------------------------------------------------
858// Debug
859__cfaabi_dbg_debug_do(
860 extern "C" {
861 void __cfaabi_dbg_record(__spinlock_t & this, const char * prev_name) {
862 this.prev_name = prev_name;
863 this.prev_thrd = kernelTLS.this_thread;
864 }
865 }
866)
867// Local Variables: //
868// mode: c //
869// tab-width: 4 //
870// End: //
Note: See TracBrowser for help on using the repository browser.