// // Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo // // The contents of this file are covered under the licence agreement in the // file "LICENCE" distributed with Cforall. // // builtins.c -- // // Author : Peter A. Buhr // Created On : Fri Jul 21 16:21:03 2017 // Last Modified By : Peter A. Buhr // Last Modified On : Thu Nov 21 16:31:39 2019 // Update Count : 101 // // type that wraps a pointer and a destructor-like function - used in generating implicit destructor calls for struct members in user-defined functions // Note: needs to occur early, because it is used to generate destructor calls during code generation forall(dtype T) struct __Destructor { T * object; void (*dtor)(T *); }; // defined destructor in the case that non-generated code wants to use __Destructor forall(dtype T) static inline void ^?{}(__Destructor(T) & x) { if (x.object && x.dtor) { x.dtor(x.object); } } // easy interface into __Destructor's destructor for easy codegen purposes extern "C" { forall(dtype T) static inline void __destroy_Destructor(__Destructor(T) * dtor) { ^(*dtor){}; } } // exception implementation typedef unsigned long long __cfaabi_abi_exception_type_t; #include // CHAR_BIT #include "../src/virtual.h" #include "../src/exception.h" void exit( int status, const char fmt[], ... ) __attribute__ (( format(printf, 2, 3), __nothrow__, __leaf__, __noreturn__ )); void abort( const char fmt[], ... ) __attribute__ (( format(printf, 1, 2), __nothrow__, __leaf__, __noreturn__ )); forall(dtype T) static inline T & identity(T & i) { return i; } // generator support struct $generator { inline int; }; static inline void ?{}($generator & this) { ((int&)this) = 0; } static inline void ^?{}($generator &) {} trait is_generator(dtype T) { void main(T & this); $generator * get_generator(T & this); }; forall(dtype T | is_generator(T)) static inline T & resume(T & gen) { main(gen); return gen; } // implicit increment, decrement if += defined, and implicit not if != defined static inline { forall( dtype DT | { DT & ?+=?( DT &, one_t ); } ) DT & ++?( DT & x ) { return x += 1; } forall( dtype DT | sized(DT) | { void ?{}( DT &, DT ); void ^?{}( DT & ); DT & ?+=?( DT &, one_t ); } ) DT & ?++( DT & x ) { DT tmp = x; x += 1; return tmp; } forall( dtype DT | { DT & ?-=?( DT &, one_t ); } ) DT & --?( DT & x ) { return x -= 1; } forall( dtype DT | sized(DT) | { void ?{}( DT &, DT ); void ^?{}( DT & ); DT & ?-=?( DT &, one_t ); } ) DT & ?--( DT & x ) { DT tmp = x; x -= 1; return tmp; } forall( dtype DT | { int ?!=?( const DT &, zero_t ); } ) int !?( const DT & x ) { return !( x != 0 ); } } // distribution // universal typed pointer constant static inline forall( dtype DT ) DT * intptr( uintptr_t addr ) { return (DT *)addr; } // exponentiation operator implementation extern "C" { float powf( float x, float y ); double pow( double x, double y ); long double powl( long double x, long double y ); float _Complex cpowf( float _Complex x, _Complex float z ); double _Complex cpow( double _Complex x, _Complex double z ); long double _Complex cpowl( long double _Complex x, _Complex long double z ); } // extern "C" static inline { float ?\?( float x, float y ) { return powf( x, y ); } double ?\?( double x, double y ) { return pow( x, y ); } long double ?\?( long double x, long double y ) { return powl( x, y ); } float _Complex ?\?( float _Complex x, _Complex float y ) { return cpowf(x, y ); } double _Complex ?\?( double _Complex x, _Complex double y ) { return cpow( x, y ); } long double _Complex ?\?( long double _Complex x, _Complex long double y ) { return cpowl( x, y ); } } // distribution #define __CFA_BASE_COMP_1__() if ( ep == 1 ) return 1 #define __CFA_BASE_COMP_2__() if ( ep == 2 ) return ep << (y - 1) #define __CFA_EXP_OVERFLOW__() if ( y >= sizeof(y) * CHAR_BIT ) return 0 #define __CFA_EXP__() \ if ( y == 0 ) return 1; /* convention */ \ __CFA_BASE_COMP_1__(); /* base case */ \ __CFA_BASE_COMP_2__(); /* special case, positive shifting for integral types */ \ __CFA_EXP_OVERFLOW__(); /* immediate overflow, negative exponent > 2^size-1 */ \ typeof(ep) op = 1; /* accumulate odd product */ \ for ( ; y > 1; y >>= 1 ) { /* squaring exponentiation, O(log2 y) */ \ if ( (y & 1) == 1 ) op = op * ep; /* odd ? */ \ ep = ep * ep; \ } \ return ep * op static inline { long int ?\?( int ep, unsigned int y ) { __CFA_EXP__(); } long int ?\?( long int ep, unsigned long int y ) { __CFA_EXP__(); } // unsigned computation may be faster and larger unsigned long int ?\?( unsigned int ep, unsigned int y ) { __CFA_EXP__(); } unsigned long int ?\?( unsigned long int ep, unsigned long int y ) { __CFA_EXP__(); } } // distribution #undef __CFA_BASE_COMP_1__ #undef __CFA_BASE_COMP_2__ #undef __CFA_EXP_OVERFLOW__ #define __CFA_BASE_COMP_1__() #define __CFA_BASE_COMP_2__() #define __CFA_EXP_OVERFLOW__() static inline forall( otype OT | { void ?{}( OT & this, one_t ); OT ?*?( OT, OT ); } ) { OT ?\?( OT ep, unsigned int y ) { __CFA_EXP__(); } OT ?\?( OT ep, unsigned long int y ) { __CFA_EXP__(); } } // distribution #undef __CFA_BASE_COMP_1__ #undef __CFA_BASE_COMP_2__ #undef __CFA_EXP_OVERFLOW__ static inline { long int ?\=?( long int & x, unsigned long int y ) { x = x \ y; return x; } unsigned long int ?\=?( unsigned long int & x, unsigned long int y ) { x = x \ y; return x; } int ?\=?( int & x, unsigned long int y ) { x = x \ y; return x; } unsigned int ?\=?( unsigned int & x, unsigned long int y ) { x = x \ y; return x; } } // distribution // Local Variables: // // mode: c // // tab-width: 4 // // End: //