source: doc/theses/thierry_delisle_MMath/text/concurrency.tex @ 2260d9e1

ADTarm-ehast-experimentalenumforall-pointer-decayjacob/cs343-translationnew-ast-unique-exprpthread-emulationqualifiedEnum
Last change on this file since 2260d9e1 was 67982887, checked in by Peter A. Buhr <pabuhr@…>, 6 years ago

specialize thesis directory-names

  • Property mode set to 100644
File size: 56.5 KB
Line 
1% ======================================================================
2% ======================================================================
3\chapter{Concurrency}
4% ======================================================================
5% ======================================================================
6Several tools can be used to solve concurrency challenges. Since many of these challenges appear with the use of mutable shared state, some languages and libraries simply disallow mutable shared state (Erlang~\cite{Erlang}, Haskell~\cite{Haskell}, Akka (Scala)~\cite{Akka}). In these paradigms, interaction among concurrent objects relies on message passing~\cite{Thoth,Harmony,V-Kernel} or other paradigms closely relate to networking concepts (channels~\cite{CSP,Go} for example). However, in languages that use routine calls as their core abstraction mechanism, these approaches force a clear distinction between concurrent and non-concurrent paradigms (i.e., message passing versus routine calls). This distinction in turn means that, in order to be effective, programmers need to learn two sets of design patterns. While this distinction can be hidden away in library code, effective use of the library still has to take both paradigms into account.
7
8Approaches based on shared memory are more closely related to non-concurrent paradigms since they often rely on basic constructs like routine calls and shared objects. At the lowest level, concurrent paradigms are implemented as atomic operations and locks. Many such mechanisms have been proposed, including semaphores~\cite{Dijkstra68b} and path expressions~\cite{Campbell74}. However, for productivity reasons it is desirable to have a higher-level construct be the core concurrency paradigm~\cite{HPP:Study}.
9
10An approach that is worth mentioning because it is gaining in popularity is transactional memory~\cite{Herlihy93}. While this approach is even pursued by system languages like \CC~\cite{Cpp-Transactions}, the performance and feature set is currently too restrictive to be the main concurrency paradigm for system languages, which is why it was rejected as the core paradigm for concurrency in \CFA.
11
12One of the most natural, elegant, and efficient mechanisms for synchronization and communication, especially for shared-memory systems, is the \emph{monitor}. Monitors were first proposed by Brinch Hansen~\cite{Hansen73} and later described and extended by C.A.R.~Hoare~\cite{Hoare74}. Many programming languages---e.g., Concurrent Pascal~\cite{ConcurrentPascal}, Mesa~\cite{Mesa}, Modula~\cite{Modula-2}, Turing~\cite{Turing:old}, Modula-3~\cite{Modula-3}, NeWS~\cite{NeWS}, Emerald~\cite{Emerald}, \uC~\cite{Buhr92a} and Java~\cite{Java}---provide monitors as explicit language constructs. In addition, operating-system kernels and device drivers have a monitor-like structure, although they often use lower-level primitives such as semaphores or locks to simulate monitors. For these reasons, this project proposes monitors as the core concurrency construct.
13
14\section{Basics}
15Non-determinism requires concurrent systems to offer support for mutual-exclusion and synchronization. Mutual-exclusion is the concept that only a fixed number of threads can access a critical section at any given time, where a critical section is a group of instructions on an associated portion of data that requires the restricted access. On the other hand, synchronization enforces relative ordering of execution and synchronization tools provide numerous mechanisms to establish timing relationships among threads.
16
17\subsection{Mutual-Exclusion}
18As mentioned above, mutual-exclusion is the guarantee that only a fix number of threads can enter a critical section at once. However, many solutions exist for mutual exclusion, which vary in terms of performance, flexibility and ease of use. Methods range from low-level locks, which are fast and flexible but require significant attention to be correct, to  higher-level concurrency techniques, which sacrifice some performance in order to improve ease of use. Ease of use comes by either guaranteeing some problems cannot occur (e.g., being deadlock free) or by offering a more explicit coupling between data and corresponding critical section. For example, the \CC \code{std::atomic<T>} offers an easy way to express mutual-exclusion on a restricted set of operations (e.g., reading/writing large types atomically). Another challenge with low-level locks is composability. Locks have restricted composability because it takes careful organizing for multiple locks to be used while preventing deadlocks. Easing composability is another feature higher-level mutual-exclusion mechanisms often offer.
19
20\subsection{Synchronization}
21As with mutual-exclusion, low-level synchronization primitives often offer good performance and good flexibility at the cost of ease of use. Again, higher-level mechanisms often simplify usage by adding either better coupling between synchronization and data (e.g., message passing) or offering a simpler solution to otherwise involved challenges. As mentioned above, synchronization can be expressed as guaranteeing that event \textit{X} always happens before \textit{Y}. Most of the time, synchronization happens within a critical section, where threads must acquire mutual-exclusion in a certain order. However, it may also be desirable to guarantee that event \textit{Z} does not occur between \textit{X} and \textit{Y}. Not satisfying this property is called \textbf{barging}. For example, where event \textit{X} tries to effect event \textit{Y} but another thread acquires the critical section and emits \textit{Z} before \textit{Y}. The classic example is the thread that finishes using a resource and unblocks a thread waiting to use the resource, but the unblocked thread must compete to acquire the resource. Preventing or detecting barging is an involved challenge with low-level locks, which can be made much easier by higher-level constructs. This challenge is often split into two different methods, barging avoidance and barging prevention. Algorithms that use flag variables to detect barging threads are said to be using barging avoidance, while algorithms that baton-pass locks~\cite{Andrews89} between threads instead of releasing the locks are said to be using barging prevention.
22
23% ======================================================================
24% ======================================================================
25\section{Monitors}
26% ======================================================================
27% ======================================================================
28A \textbf{monitor} is a set of routines that ensure mutual-exclusion when accessing shared state. More precisely, a monitor is a programming technique that associates mutual-exclusion to routine scopes, as opposed to mutex locks, where mutual-exclusion is defined by lock/release calls independently of any scoping of the calling routine. This strong association eases readability and maintainability, at the cost of flexibility. Note that both monitors and mutex locks, require an abstract handle to identify them. This concept is generally associated with object-oriented languages like Java~\cite{Java} or \uC~\cite{uC++book} but does not strictly require OO semantics. The only requirement is the ability to declare a handle to a shared object and a set of routines that act on it:
29\begin{cfacode}
30typedef /*some monitor type*/ monitor;
31int f(monitor & m);
32
33int main() {
34        monitor m;  //Handle m
35        f(m);       //Routine using handle
36}
37\end{cfacode}
38
39% ======================================================================
40% ======================================================================
41\subsection{Call Semantics} \label{call}
42% ======================================================================
43% ======================================================================
44The above monitor example displays some of the intrinsic characteristics. First, it is necessary to use pass-by-reference over pass-by-value for monitor routines. This semantics is important, because at their core, monitors are implicit mutual-exclusion objects (locks), and these objects cannot be copied. Therefore, monitors are non-copy-able objects (\code{dtype}).
45
46Another aspect to consider is when a monitor acquires its mutual exclusion. For example, a monitor may need to be passed through multiple helper routines that do not acquire the monitor mutual-exclusion on entry. Passthrough can occur for generic helper routines (\code{swap}, \code{sort}, etc.) or specific helper routines like the following to implement an atomic counter:
47
48\begin{cfacode}
49monitor counter_t { /*...see section $\ref{data}$...*/ };
50
51void ?{}(counter_t & nomutex this); //constructor
52size_t ++?(counter_t & mutex this); //increment
53
54//need for mutex is platform dependent
55void ?{}(size_t * this, counter_t & mutex cnt); //conversion
56\end{cfacode}
57This counter is used as follows:
58\begin{center}
59\begin{tabular}{c @{\hskip 0.35in} c @{\hskip 0.35in} c}
60\begin{cfacode}
61//shared counter
62counter_t cnt1, cnt2;
63
64//multiple threads access counter
65thread 1 : cnt1++; cnt2++;
66thread 2 : cnt1++; cnt2++;
67thread 3 : cnt1++; cnt2++;
68        ...
69thread N : cnt1++; cnt2++;
70\end{cfacode}
71\end{tabular}
72\end{center}
73Notice how the counter is used without any explicit synchronization and yet supports thread-safe semantics for both reading and writing, which is similar in usage to the \CC template \code{std::atomic}.
74
75Here, the constructor (\code{?\{\}}) uses the \code{nomutex} keyword to signify that it does not acquire the monitor mutual-exclusion when constructing. This semantics is because an object not yet con\-structed should never be shared and therefore does not require mutual exclusion. Furthermore, it allows the implementation greater freedom when it initializes the monitor locking. The prefix increment operator uses \code{mutex} to protect the incrementing process from race conditions. Finally, there is a conversion operator from \code{counter_t} to \code{size_t}. This conversion may or may not require the \code{mutex} keyword depending on whether or not reading a \code{size_t} is an atomic operation.
76
77For maximum usability, monitors use \gls{multi-acq} semantics, which means a single thread can acquire the same monitor multiple times without deadlock. For example, listing \ref{fig:search} uses recursion and \gls{multi-acq} to print values inside a binary tree.
78\begin{figure}
79\begin{cfacode}[caption={Recursive printing algorithm using \gls{multi-acq}.},label={fig:search}]
80monitor printer { ... };
81struct tree {
82        tree * left, right;
83        char * value;
84};
85void print(printer & mutex p, char * v);
86
87void print(printer & mutex p, tree * t) {
88        print(p, t->value);
89        print(p, t->left );
90        print(p, t->right);
91}
92\end{cfacode}
93\end{figure}
94
95Having both \code{mutex} and \code{nomutex} keywords can be redundant, depending on the meaning of a routine having neither of these keywords. For example, it is reasonable that it should default to the safest option (\code{mutex}) when given a routine without qualifiers \code{void foo(counter_t & this)}, whereas assuming \code{nomutex} is unsafe and may cause subtle errors. On the other hand, \code{nomutex} is the ``normal'' parameter behaviour, it effectively states explicitly that ``this routine is not special''. Another alternative is making exactly one of these keywords mandatory, which provides the same semantics but without the ambiguity of supporting routines with neither keyword. Mandatory keywords would also have the added benefit of being self-documented but at the cost of extra typing. While there are several benefits to mandatory keywords, they do bring a few challenges. Mandatory keywords in \CFA would imply that the compiler must know without doubt whether or not a parameter is a monitor or not. Since \CFA relies heavily on traits as an abstraction mechanism, the distinction between a type that is a monitor and a type that looks like a monitor can become blurred. For this reason, \CFA only has the \code{mutex} keyword and uses no keyword to mean \code{nomutex}.
96
97The next semantic decision is to establish when \code{mutex} may be used as a type qualifier. Consider the following declarations:
98\begin{cfacode}
99int f1(monitor & mutex m);
100int f2(const monitor & mutex m);
101int f3(monitor ** mutex m);
102int f4(monitor * mutex m []);
103int f5(graph(monitor *) & mutex m);
104\end{cfacode}
105The problem is to identify which object(s) should be acquired. Furthermore, each object needs to be acquired only once. In the case of simple routines like \code{f1} and \code{f2} it is easy to identify an exhaustive list of objects to acquire on entry. Adding indirections (\code{f3}) still allows the compiler and programmer to identify which object is acquired. However, adding in arrays (\code{f4}) makes it much harder. Array lengths are not necessarily known in C, and even then, making sure objects are only acquired once becomes none-trivial. This problem can be extended to absurd limits like \code{f5}, which uses a graph of monitors. To make the issue tractable, this project imposes the requirement that a routine may only acquire one monitor per parameter and it must be the type of the parameter with at most one level of indirection (ignoring potential qualifiers). Also note that while routine \code{f3} can be supported, meaning that monitor \code{**m} is acquired, passing an array to this routine would be type-safe and yet result in undefined behaviour because only the first element of the array is acquired. However, this ambiguity is part of the C type-system with respects to arrays. For this reason, \code{mutex} is disallowed in the context where arrays may be passed:
106\begin{cfacode}
107int f1(monitor & mutex m);    //Okay : recommended case
108int f2(monitor * mutex m);    //Not Okay : Could be an array
109int f3(monitor mutex m []);  //Not Okay : Array of unknown length
110int f4(monitor ** mutex m);   //Not Okay : Could be an array
111int f5(monitor * mutex m []); //Not Okay : Array of unknown length
112\end{cfacode}
113Note that not all array functions are actually distinct in the type system. However, even if the code generation could tell the difference, the extra information is still not sufficient to extend meaningfully the monitor call semantic.
114
115Unlike object-oriented monitors, where calling a mutex member \emph{implicitly} acquires mutual-exclusion of the receiver object, \CFA uses an explicit mechanism to specify the object that acquires mutual-exclusion. A consequence of this approach is that it extends naturally to multi-monitor calls.
116\begin{cfacode}
117int f(MonitorA & mutex a, MonitorB & mutex b);
118
119MonitorA a;
120MonitorB b;
121f(a,b);
122\end{cfacode}
123While OO monitors could be extended with a mutex qualifier for multiple-monitor calls, no example of this feature could be found. The capability to acquire multiple locks before entering a critical section is called \emph{\gls{bulk-acq}}. In practice, writing multi-locking routines that do not lead to deadlocks is tricky. Having language support for such a feature is therefore a significant asset for \CFA. In the case presented above, \CFA guarantees that the order of acquisition is consistent across calls to different routines using the same monitors as arguments. This consistent ordering means acquiring multiple monitors is safe from deadlock when using \gls{bulk-acq}. However, users can still force the acquiring order. For example, notice which routines use \code{mutex}/\code{nomutex} and how this affects acquiring order:
124\begin{cfacode}
125void foo(A& mutex a, B& mutex b) { //acquire a & b
126        ...
127}
128
129void bar(A& mutex a, B& /*nomutex*/ b) { //acquire a
130        ... foo(a, b); ... //acquire b
131}
132
133void baz(A& /*nomutex*/ a, B& mutex b) { //acquire b
134        ... foo(a, b); ... //acquire a
135}
136\end{cfacode}
137The \gls{multi-acq} monitor lock allows a monitor lock to be acquired by both \code{bar} or \code{baz} and acquired again in \code{foo}. In the calls to \code{bar} and \code{baz} the monitors are acquired in opposite order.
138
139However, such use leads to lock acquiring order problems. In the example above, the user uses implicit ordering in the case of function \code{foo} but explicit ordering in the case of \code{bar} and \code{baz}. This subtle difference means that calling these routines concurrently may lead to deadlock and is therefore undefined behaviour. As shown~\cite{Lister77}, solving this problem requires:
140\begin{enumerate}
141        \item Dynamically tracking the monitor-call order.
142        \item Implement rollback semantics.
143\end{enumerate}
144While the first requirement is already a significant constraint on the system, implementing a general rollback semantics in a C-like language is still prohibitively complex~\cite{Dice10}. In \CFA, users simply need to be careful when acquiring multiple monitors at the same time or only use \gls{bulk-acq} of all the monitors. While \CFA provides only a partial solution, most systems provide no solution and the \CFA partial solution handles many useful cases.
145
146For example, \gls{multi-acq} and \gls{bulk-acq} can be used together in interesting ways:
147\begin{cfacode}
148monitor bank { ... };
149
150void deposit( bank & mutex b, int deposit );
151
152void transfer( bank & mutex mybank, bank & mutex yourbank, int me2you) {
153        deposit( mybank, -me2you );
154        deposit( yourbank, me2you );
155}
156\end{cfacode}
157This example shows a trivial solution to the bank-account transfer problem~\cite{BankTransfer}. Without \gls{multi-acq} and \gls{bulk-acq}, the solution to this problem is much more involved and requires careful engineering.
158
159\subsection{\code{mutex} statement} \label{mutex-stmt}
160
161The call semantics discussed above have one software engineering issue: only a routine can acquire the mutual-exclusion of a set of monitor. \CFA offers the \code{mutex} statement to work around the need for unnecessary names, avoiding a major software engineering problem~\cite{2FTwoHardThings}. Table \ref{lst:mutex-stmt} shows an example of the \code{mutex} statement, which introduces a new scope in which the mutual-exclusion of a set of monitor is acquired. Beyond naming, the \code{mutex} statement has no semantic difference from a routine call with \code{mutex} parameters.
162
163\begin{table}
164\begin{center}
165\begin{tabular}{|c|c|}
166function call & \code{mutex} statement \\
167\hline
168\begin{cfacode}[tabsize=3]
169monitor M {};
170void foo( M & mutex m1, M & mutex m2 ) {
171        //critical section
172}
173
174void bar( M & m1, M & m2 ) {
175        foo( m1, m2 );
176}
177\end{cfacode}&\begin{cfacode}[tabsize=3]
178monitor M {};
179void bar( M & m1, M & m2 ) {
180        mutex(m1, m2) {
181                //critical section
182        }
183}
184
185
186\end{cfacode}
187\end{tabular}
188\end{center}
189\caption{Regular call semantics vs. \code{mutex} statement}
190\label{lst:mutex-stmt}
191\end{table}
192
193% ======================================================================
194% ======================================================================
195\subsection{Data semantics} \label{data}
196% ======================================================================
197% ======================================================================
198Once the call semantics are established, the next step is to establish data semantics. Indeed, until now a monitor is used simply as a generic handle but in most cases monitors contain shared data. This data should be intrinsic to the monitor declaration to prevent any accidental use of data without its appropriate protection. For example, here is a complete version of the counter shown in section \ref{call}:
199\begin{cfacode}
200monitor counter_t {
201        int value;
202};
203
204void ?{}(counter_t & this) {
205        this.cnt = 0;
206}
207
208int ?++(counter_t & mutex this) {
209        return ++this.value;
210}
211
212//need for mutex is platform dependent here
213void ?{}(int * this, counter_t & mutex cnt) {
214        *this = (int)cnt;
215}
216\end{cfacode}
217
218Like threads and coroutines, monitors are defined in terms of traits with some additional language support in the form of the \code{monitor} keyword. The monitor trait is:
219\begin{cfacode}
220trait is_monitor(dtype T) {
221        monitor_desc * get_monitor( T & );
222        void ^?{}( T & mutex );
223};
224\end{cfacode}
225Note that the destructor of a monitor must be a \code{mutex} routine to prevent deallocation while a thread is accessing the monitor. As with any object, calls to a monitor, using \code{mutex} or otherwise, is undefined behaviour after the destructor has run.
226
227% ======================================================================
228% ======================================================================
229\section{Internal Scheduling} \label{intsched}
230% ======================================================================
231% ======================================================================
232In addition to mutual exclusion, the monitors at the core of \CFA's concurrency can also be used to achieve synchronization. With monitors, this capability is generally achieved with internal or external scheduling as in~\cite{Hoare74}. With \textbf{scheduling} loosely defined as deciding which thread acquires the critical section next, \textbf{internal scheduling} means making the decision from inside the critical section (i.e., with access to the shared state), while \textbf{external scheduling} means making the decision when entering the critical section (i.e., without access to the shared state). Since internal scheduling within a single monitor is mostly a solved problem, this thesis concentrates on extending internal scheduling to multiple monitors. Indeed, like the \gls{bulk-acq} semantics, internal scheduling extends to multiple monitors in a way that is natural to the user but requires additional complexity on the implementation side.
233
234First, here is a simple example of internal scheduling:
235
236\begin{cfacode}
237monitor A {
238        condition e;
239}
240
241void foo(A& mutex a1, A& mutex a2) {
242        ...
243        //Wait for cooperation from bar()
244        wait(a1.e);
245        ...
246}
247
248void bar(A& mutex a1, A& mutex a2) {
249        //Provide cooperation for foo()
250        ...
251        //Unblock foo
252        signal(a1.e);
253}
254\end{cfacode}
255There are two details to note here. First, \code{signal} is a delayed operation; it only unblocks the waiting thread when it reaches the end of the critical section. This semantics is needed to respect mutual-exclusion, i.e., the signaller and signalled thread cannot be in the monitor simultaneously. The alternative is to return immediately after the call to \code{signal}, which is significantly more restrictive. Second, in \CFA, while it is common to store a \code{condition} as a field of the monitor, a \code{condition} variable can be stored/created independently of a monitor. Here routine \code{foo} waits for the \code{signal} from \code{bar} before making further progress, ensuring a basic ordering.
256
257An important aspect of the implementation is that \CFA does not allow barging, which means that once function \code{bar} releases the monitor, \code{foo} is guaranteed to be the next thread to acquire the monitor (unless some other thread waited on the same condition). This guarantee offers the benefit of not having to loop around waits to recheck that a condition is met. The main reason \CFA offers this guarantee is that users can easily introduce barging if it becomes a necessity but adding barging prevention or barging avoidance is more involved without language support. Supporting barging prevention as well as extending internal scheduling to multiple monitors is the main source of complexity in the design and implementation of \CFA concurrency.
258
259% ======================================================================
260% ======================================================================
261\subsection{Internal Scheduling - Multi-Monitor}
262% ======================================================================
263% ======================================================================
264It is easy to understand the problem of multi-monitor scheduling using a series of pseudo-code examples. Note that for simplicity in the following snippets of pseudo-code, waiting and signalling is done using an implicit condition variable, like Java built-in monitors. Indeed, \code{wait} statements always use the implicit condition variable as parameters and explicitly name the monitors (A and B) associated with the condition. Note that in \CFA, condition variables are tied to a \emph{group} of monitors on first use (called branding), which means that using internal scheduling with distinct sets of monitors requires one condition variable per set of monitors. The example below shows the simple case of having two threads (one for each column) and a single monitor A.
265
266\begin{multicols}{2}
267thread 1
268\begin{pseudo}
269acquire A
270        wait A
271release A
272\end{pseudo}
273
274\columnbreak
275
276thread 2
277\begin{pseudo}
278acquire A
279        signal A
280release A
281\end{pseudo}
282\end{multicols}
283One thread acquires before waiting (atomically blocking and releasing A) and the other acquires before signalling. It is important to note here that both \code{wait} and \code{signal} must be called with the proper monitor(s) already acquired. This semantic is a logical requirement for barging prevention.
284
285A direct extension of the previous example is a \gls{bulk-acq} version:
286\begin{multicols}{2}
287\begin{pseudo}
288acquire A & B
289        wait A & B
290release A & B
291\end{pseudo}
292\columnbreak
293\begin{pseudo}
294acquire A & B
295        signal A & B
296release A & B
297\end{pseudo}
298\end{multicols}
299\noindent This version uses \gls{bulk-acq} (denoted using the {\sf\&} symbol), but the presence of multiple monitors does not add a particularly new meaning. Synchronization happens between the two threads in exactly the same way and order. The only difference is that mutual exclusion covers a group of monitors. On the implementation side, handling multiple monitors does add a degree of complexity as the next few examples demonstrate.
300
301While deadlock issues can occur when nesting monitors, these issues are only a symptom of the fact that locks, and by extension monitors, are not perfectly composable. For monitors, a well-known deadlock problem is the Nested Monitor Problem~\cite{Lister77}, which occurs when a \code{wait} is made by a thread that holds more than one monitor. For example, the following pseudo-code runs into the nested-monitor problem:
302\begin{multicols}{2}
303\begin{pseudo}
304acquire A
305        acquire B
306                wait B
307        release B
308release A
309\end{pseudo}
310
311\columnbreak
312
313\begin{pseudo}
314acquire A
315        acquire B
316                signal B
317        release B
318release A
319\end{pseudo}
320\end{multicols}
321\noindent The \code{wait} only releases monitor \code{B} so the signalling thread cannot acquire monitor \code{A} to get to the \code{signal}. Attempting release of all acquired monitors at the \code{wait} introduces a different set of problems, such as releasing monitor \code{C}, which has nothing to do with the \code{signal}.
322
323However, for monitors as for locks, it is possible to write a program using nesting without encountering any problems if nesting is done correctly. For example, the next pseudo-code snippet acquires monitors {\sf A} then {\sf B} before waiting, while only acquiring {\sf B} when signalling, effectively avoiding the Nested Monitor Problem~\cite{Lister77}.
324
325\begin{multicols}{2}
326\begin{pseudo}
327acquire A
328        acquire B
329                wait B
330        release B
331release A
332\end{pseudo}
333
334\columnbreak
335
336\begin{pseudo}
337
338acquire B
339        signal B
340release B
341
342\end{pseudo}
343\end{multicols}
344
345\noindent However, this simple refactoring may not be possible, forcing more complex restructuring.
346
347% ======================================================================
348% ======================================================================
349\subsection{Internal Scheduling - In Depth}
350% ======================================================================
351% ======================================================================
352
353A larger example is presented to show complex issues for \gls{bulk-acq} and its implementation options are analyzed. Listing \ref{lst:int-bulk-pseudo} shows an example where \gls{bulk-acq} adds a significant layer of complexity to the internal signalling semantics, and listing \ref{lst:int-bulk-cfa} shows the corresponding \CFA code to implement the pseudo-code in listing \ref{lst:int-bulk-pseudo}. For the purpose of translating the given pseudo-code into \CFA-code, any method of introducing a monitor is acceptable, e.g., \code{mutex} parameters, global variables, pointer parameters, or using locals with the \code{mutex} statement.
354
355\begin{figure}[!t]
356\begin{multicols}{2}
357Waiting thread
358\begin{pseudo}[numbers=left]
359acquire A
360        //Code Section 1
361        acquire A & B
362                //Code Section 2
363                wait A & B
364                //Code Section 3
365        release A & B
366        //Code Section 4
367release A
368\end{pseudo}
369\columnbreak
370Signalling thread
371\begin{pseudo}[numbers=left, firstnumber=10,escapechar=|]
372acquire A
373        //Code Section 5
374        acquire A & B
375                //Code Section 6
376                |\label{line:signal1}|signal A & B
377                //Code Section 7
378        |\label{line:releaseFirst}|release A & B
379        //Code Section 8
380|\label{line:lastRelease}|release A
381\end{pseudo}
382\end{multicols}
383\begin{cfacode}[caption={Internal scheduling with \gls{bulk-acq}},label={lst:int-bulk-pseudo}]
384\end{cfacode}
385\begin{center}
386\begin{cfacode}[xleftmargin=.4\textwidth]
387monitor A a;
388monitor B b;
389condition c;
390\end{cfacode}
391\end{center}
392\begin{multicols}{2}
393Waiting thread
394\begin{cfacode}
395mutex(a) {
396        //Code Section 1
397        mutex(a, b) {
398                //Code Section 2
399                wait(c);
400                //Code Section 3
401        }
402        //Code Section 4
403}
404\end{cfacode}
405\columnbreak
406Signalling thread
407\begin{cfacode}
408mutex(a) {
409        //Code Section 5
410        mutex(a, b) {
411                //Code Section 6
412                signal(c);
413                //Code Section 7
414        }
415        //Code Section 8
416}
417\end{cfacode}
418\end{multicols}
419\begin{cfacode}[caption={Equivalent \CFA code for listing \ref{lst:int-bulk-pseudo}},label={lst:int-bulk-cfa}]
420\end{cfacode}
421\begin{multicols}{2}
422Waiter
423\begin{pseudo}[numbers=left]
424acquire A
425        acquire A & B
426                wait A & B
427        release A & B
428release A
429\end{pseudo}
430
431\columnbreak
432
433Signaller
434\begin{pseudo}[numbers=left, firstnumber=6,escapechar=|]
435acquire A
436        acquire A & B
437                signal A & B
438        release A & B
439        |\label{line:secret}|//Secretly keep B here
440release A
441//Wakeup waiter and transfer A & B
442\end{pseudo}
443\end{multicols}
444\begin{cfacode}[caption={Listing \ref{lst:int-bulk-pseudo}, with delayed signalling comments},label={lst:int-secret}]
445\end{cfacode}
446\end{figure}
447
448The complexity begins at code sections 4 and 8 in listing \ref{lst:int-bulk-pseudo}, which are where the existing semantics of internal scheduling needs to be extended for multiple monitors. The root of the problem is that \gls{bulk-acq} is used in a context where one of the monitors is already acquired, which is why it is important to define the behaviour of the previous pseudo-code. When the signaller thread reaches the location where it should ``release \code{A & B}'' (listing \ref{lst:int-bulk-pseudo} line \ref{line:releaseFirst}), it must actually transfer ownership of monitor \code{B} to the waiting thread. This ownership transfer is required in order to prevent barging into \code{B} by another thread, since both the signalling and signalled threads still need monitor \code{A}. There are three options:
449
450\subsubsection{Delaying Signals}
451The obvious solution to the problem of multi-monitor scheduling is to keep ownership of all locks until the last lock is ready to be transferred. It can be argued that that moment is when the last lock is no longer needed, because this semantics fits most closely to the behaviour of single-monitor scheduling. This solution has the main benefit of transferring ownership of groups of monitors, which simplifies the semantics from multiple objects to a single group of objects, effectively making the existing single-monitor semantic viable by simply changing monitors to monitor groups. This solution releases the monitors once every monitor in a group can be released. However, since some monitors are never released (e.g., the monitor of a thread), this interpretation means a group might never be released. A more interesting interpretation is to transfer the group until all its monitors are released, which means the group is not passed further and a thread can retain its locks.
452
453However, listing \ref{lst:int-secret} shows this solution can become much more complicated depending on what is executed while secretly holding B at line \ref{line:secret}, while avoiding the need to transfer ownership of a subset of the condition monitors. Listing \ref{lst:dependency} shows a slightly different example where a third thread is waiting on monitor \code{A}, using a different condition variable. Because the third thread is signalled when secretly holding \code{B}, the goal  becomes unreachable. Depending on the order of signals (listing \ref{lst:dependency} line \ref{line:signal-ab} and \ref{line:signal-a}) two cases can happen:
454
455\paragraph{Case 1: thread $\alpha$ goes first.} In this case, the problem is that monitor \code{A} needs to be passed to thread $\beta$ when thread $\alpha$ is done with it.
456\paragraph{Case 2: thread $\beta$ goes first.} In this case, the problem is that monitor \code{B} needs to be retained and passed to thread $\alpha$ along with monitor \code{A}, which can be done directly or possibly using thread $\beta$ as an intermediate.
457\\
458
459Note that ordering is not determined by a race condition but by whether signalled threads are enqueued in FIFO or FILO order. However, regardless of the answer, users can move line \ref{line:signal-a} before line \ref{line:signal-ab} and get the reverse effect for listing \ref{lst:dependency}.
460
461In both cases, the threads need to be able to distinguish, on a per monitor basis, which ones need to be released and which ones need to be transferred, which means knowing when to release a group becomes complex and inefficient (see next section) and therefore effectively precludes this approach.
462
463\subsubsection{Dependency graphs}
464
465
466\begin{figure}
467\begin{multicols}{3}
468Thread $\alpha$
469\begin{pseudo}[numbers=left, firstnumber=1]
470acquire A
471        acquire A & B
472                wait A & B
473        release A & B
474release A
475\end{pseudo}
476\columnbreak
477Thread $\gamma$
478\begin{pseudo}[numbers=left, firstnumber=6, escapechar=|]
479acquire A
480        acquire A & B
481                |\label{line:signal-ab}|signal A & B
482        |\label{line:release-ab}|release A & B
483        |\label{line:signal-a}|signal A
484|\label{line:release-a}|release A
485\end{pseudo}
486\columnbreak
487Thread $\beta$
488\begin{pseudo}[numbers=left, firstnumber=12, escapechar=|]
489acquire A
490        wait A
491|\label{line:release-aa}|release A
492\end{pseudo}
493\end{multicols}
494\begin{cfacode}[caption={Pseudo-code for the three thread example.},label={lst:dependency}]
495\end{cfacode}
496\begin{center}
497\input{dependency}
498\end{center}
499\caption{Dependency graph of the statements in listing \ref{lst:dependency}}
500\label{fig:dependency}
501\end{figure}
502
503In listing \ref{lst:int-bulk-pseudo}, there is a solution that satisfies both barging prevention and mutual exclusion. If ownership of both monitors is transferred to the waiter when the signaller releases \code{A & B} and then the waiter transfers back ownership of \code{A} back to the signaller when it releases it, then the problem is solved (\code{B} is no longer in use at this point). Dynamically finding the correct order is therefore the second possible solution. The problem is effectively resolving a dependency graph of ownership requirements. Here even the simplest of code snippets requires two transfers and has a super-linear complexity. This complexity can be seen in listing \ref{lst:explosion}, which is just a direct extension to three monitors, requires at least three ownership transfer and has multiple solutions. Furthermore, the presence of multiple solutions for ownership transfer can cause deadlock problems if a specific solution is not consistently picked; In the same way that multiple lock acquiring order can cause deadlocks.
504\begin{figure}
505\begin{multicols}{2}
506\begin{pseudo}
507acquire A
508        acquire B
509                acquire C
510                        wait A & B & C
511                release C
512        release B
513release A
514\end{pseudo}
515
516\columnbreak
517
518\begin{pseudo}
519acquire A
520        acquire B
521                acquire C
522                        signal A & B & C
523                release C
524        release B
525release A
526\end{pseudo}
527\end{multicols}
528\begin{cfacode}[caption={Extension to three monitors of listing \ref{lst:int-bulk-pseudo}},label={lst:explosion}]
529\end{cfacode}
530\end{figure}
531
532Given the three threads example in listing \ref{lst:dependency}, figure \ref{fig:dependency} shows the corresponding dependency graph that results, where every node is a statement of one of the three threads, and the arrows the dependency of that statement (e.g., $\alpha1$ must happen before $\alpha2$). The extra challenge is that this dependency graph is effectively post-mortem, but the runtime system needs to be able to build and solve these graphs as the dependencies unfold. Resolving dependency graphs being a complex and expensive endeavour, this solution is not the preferred one.
533
534\subsubsection{Partial Signalling} \label{partial-sig}
535Finally, the solution that is chosen for \CFA is to use partial signalling. Again using listing \ref{lst:int-bulk-pseudo}, the partial signalling solution transfers ownership of monitor \code{B} at lines \ref{line:signal1} to the waiter but does not wake the waiting thread since it is still using monitor \code{A}. Only when it reaches line \ref{line:lastRelease} does it actually wake up the waiting thread. This solution has the benefit that complexity is encapsulated into only two actions: passing monitors to the next owner when they should be released and conditionally waking threads if all conditions are met. This solution has a much simpler implementation than a dependency graph solving algorithms, which is why it was chosen. Furthermore, after being fully implemented, this solution does not appear to have any significant downsides.
536
537Using partial signalling, listing \ref{lst:dependency} can be solved easily:
538\begin{itemize}
539        \item When thread $\gamma$ reaches line \ref{line:release-ab} it transfers monitor \code{B} to thread $\alpha$ and continues to hold monitor \code{A}.
540        \item When thread $\gamma$ reaches line \ref{line:release-a}  it transfers monitor \code{A} to thread $\beta$  and wakes it up.
541        \item When thread $\beta$  reaches line \ref{line:release-aa} it transfers monitor \code{A} to thread $\alpha$ and wakes it up.
542\end{itemize}
543
544% ======================================================================
545% ======================================================================
546\subsection{Signalling: Now or Later}
547% ======================================================================
548% ======================================================================
549\begin{table}
550\begin{tabular}{|c|c|}
551\code{signal} & \code{signal_block} \\
552\hline
553\begin{cfacode}[tabsize=3]
554monitor DatingService
555{
556        //compatibility codes
557        enum{ CCodes = 20 };
558
559        int girlPhoneNo
560        int boyPhoneNo;
561};
562
563condition girls[CCodes];
564condition boys [CCodes];
565condition exchange;
566
567int girl(int phoneNo, int ccode)
568{
569        //no compatible boy ?
570        if(empty(boys[ccode]))
571        {
572                //wait for boy
573                wait(girls[ccode]);
574
575                //make phone number available
576                girlPhoneNo = phoneNo;
577
578                //wake boy from chair
579                signal(exchange);
580        }
581        else
582        {
583                //make phone number available
584                girlPhoneNo = phoneNo;
585
586                //wake boy
587                signal(boys[ccode]);
588
589                //sit in chair
590                wait(exchange);
591        }
592        return boyPhoneNo;
593}
594
595int boy(int phoneNo, int ccode)
596{
597        //same as above
598        //with boy/girl interchanged
599}
600\end{cfacode}&\begin{cfacode}[tabsize=3]
601monitor DatingService
602{
603        //compatibility codes
604        enum{ CCodes = 20 };
605
606        int girlPhoneNo;
607        int boyPhoneNo;
608};
609
610condition girls[CCodes];
611condition boys [CCodes];
612//exchange is not needed
613
614int girl(int phoneNo, int ccode)
615{
616        //no compatible boy ?
617        if(empty(boys[ccode]))
618        {
619                //wait for boy
620                wait(girls[ccode]);
621
622                //make phone number available
623                girlPhoneNo = phoneNo;
624
625                //wake boy from chair
626                signal(exchange);
627        }
628        else
629        {
630                //make phone number available
631                girlPhoneNo = phoneNo;
632
633                //wake boy
634                signal_block(boys[ccode]);
635
636                //second handshake unnecessary
637
638        }
639        return boyPhoneNo;
640}
641
642int boy(int phoneNo, int ccode)
643{
644        //same as above
645        //with boy/girl interchanged
646}
647\end{cfacode}
648\end{tabular}
649\caption{Dating service example using \code{signal} and \code{signal_block}. }
650\label{tbl:datingservice}
651\end{table}
652An important note is that, until now, signalling a monitor was a delayed operation. The ownership of the monitor is transferred only when the monitor would have otherwise been released, not at the point of the \code{signal} statement. However, in some cases, it may be more convenient for users to immediately transfer ownership to the thread that is waiting for cooperation, which is achieved using the \code{signal_block} routine.
653
654The example in table \ref{tbl:datingservice} highlights the difference in behaviour. As mentioned, \code{signal} only transfers ownership once the current critical section exits; this behaviour requires additional synchronization when a two-way handshake is needed. To avoid this explicit synchronization, the \code{condition} type offers the \code{signal_block} routine, which handles the two-way handshake as shown in the example. This feature removes the need for a second condition variables and simplifies programming. Like every other monitor semantic, \code{signal_block} uses barging prevention, which means mutual-exclusion is baton-passed both on the front end and the back end of the call to \code{signal_block}, meaning no other thread can acquire the monitor either before or after the call.
655
656% ======================================================================
657% ======================================================================
658\section{External scheduling} \label{extsched}
659% ======================================================================
660% ======================================================================
661An alternative to internal scheduling is external scheduling (see Table~\ref{tbl:sched}).
662\begin{table}
663\begin{tabular}{|c|c|c|}
664Internal Scheduling & External Scheduling & Go\\
665\hline
666\begin{ucppcode}[tabsize=3]
667_Monitor Semaphore {
668        condition c;
669        bool inUse;
670public:
671        void P() {
672                if(inUse)
673                        wait(c);
674                inUse = true;
675        }
676        void V() {
677                inUse = false;
678                signal(c);
679        }
680}
681\end{ucppcode}&\begin{ucppcode}[tabsize=3]
682_Monitor Semaphore {
683
684        bool inUse;
685public:
686        void P() {
687                if(inUse)
688                        _Accept(V);
689                inUse = true;
690        }
691        void V() {
692                inUse = false;
693
694        }
695}
696\end{ucppcode}&\begin{gocode}[tabsize=3]
697type MySem struct {
698        inUse bool
699        c     chan bool
700}
701
702// acquire
703func (s MySem) P() {
704        if s.inUse {
705                select {
706                case <-s.c:
707                }
708        }
709        s.inUse = true
710}
711
712// release
713func (s MySem) V() {
714        s.inUse = false
715
716        //This actually deadlocks
717        //when single thread
718        s.c <- false
719}
720\end{gocode}
721\end{tabular}
722\caption{Different forms of scheduling.}
723\label{tbl:sched}
724\end{table}
725This method is more constrained and explicit, which helps users reduce the non-deterministic nature of concurrency. Indeed, as the following examples demonstrate, external scheduling allows users to wait for events from other threads without the concern of unrelated events occurring. External scheduling can generally be done either in terms of control flow (e.g., Ada with \code{accept}, \uC with \code{_Accept}) or in terms of data (e.g., Go with channels). Of course, both of these paradigms have their own strengths and weaknesses, but for this project, control-flow semantics was chosen to stay consistent with the rest of the languages semantics. Two challenges specific to \CFA arise when trying to add external scheduling with loose object definitions and multiple-monitor routines. The previous example shows a simple use \code{_Accept} versus \code{wait}/\code{signal} and its advantages. Note that while other languages often use \code{accept}/\code{select} as the core external scheduling keyword, \CFA uses \code{waitfor} to prevent name collisions with existing socket \acrshort{api}s.
726
727For the \code{P} member above using internal scheduling, the call to \code{wait} only guarantees that \code{V} is the last routine to access the monitor, allowing a third routine, say \code{isInUse()}, acquire mutual exclusion several times while routine \code{P} is waiting. On the other hand, external scheduling guarantees that while routine \code{P} is waiting, no other routine than \code{V} can acquire the monitor.
728
729% ======================================================================
730% ======================================================================
731\subsection{Loose Object Definitions}
732% ======================================================================
733% ======================================================================
734In \uC, a monitor class declaration includes an exhaustive list of monitor operations. Since \CFA is not object oriented, monitors become both more difficult to implement and less clear for a user:
735
736\begin{cfacode}
737monitor A {};
738
739void f(A & mutex a);
740void g(A & mutex a) {
741        waitfor(f); //Obvious which f() to wait for
742}
743
744void f(A & mutex a, int); //New different F added in scope
745void h(A & mutex a) {
746        waitfor(f); //Less obvious which f() to wait for
747}
748\end{cfacode}
749
750Furthermore, external scheduling is an example where implementation constraints become visible from the interface. Here is the pseudo-code for the entering phase of a monitor:
751\begin{center}
752\begin{tabular}{l}
753\begin{pseudo}
754        if monitor is free
755                enter
756        elif already own the monitor
757                continue
758        elif monitor accepts me
759                enter
760        else
761                block
762\end{pseudo}
763\end{tabular}
764\end{center}
765For the first two conditions, it is easy to implement a check that can evaluate the condition in a few instructions. However, a fast check for \pscode{monitor accepts me} is much harder to implement depending on the constraints put on the monitors. Indeed, monitors are often expressed as an entry queue and some acceptor queue as in Figure~\ref{fig:ClassicalMonitor}.
766
767\begin{figure}
768\centering
769\subfloat[Classical Monitor] {
770\label{fig:ClassicalMonitor}
771{\resizebox{0.45\textwidth}{!}{\input{monitor}}}
772}% subfloat
773\qquad
774\subfloat[\Gls{bulk-acq} Monitor] {
775\label{fig:BulkMonitor}
776{\resizebox{0.45\textwidth}{!}{\input{ext_monitor}}}
777}% subfloat
778\caption{External Scheduling Monitor}
779\end{figure}
780
781There are other alternatives to these pictures, but in the case of the left picture, implementing a fast accept check is relatively easy. Restricted to a fixed number of mutex members, N, the accept check reduces to updating a bitmask when the acceptor queue changes, a check that executes in a single instruction even with a fairly large number (e.g., 128) of mutex members. This approach requires a unique dense ordering of routines with an upper-bound and that ordering must be consistent across translation units. For OO languages these constraints are common, since objects only offer adding member routines consistently across translation units via inheritance. However, in \CFA users can extend objects with mutex routines that are only visible in certain translation unit. This means that establishing a program-wide dense-ordering among mutex routines can only be done in the program linking phase, and still could have issues when using dynamically shared objects.
782
783The alternative is to alter the implementation as in Figure~\ref{fig:BulkMonitor}.
784Here, the mutex routine called is associated with a thread on the entry queue while a list of acceptable routines is kept separate. Generating a mask dynamically means that the storage for the mask information can vary between calls to \code{waitfor}, allowing for more flexibility and extensions. Storing an array of accepted function pointers replaces the single instruction bitmask comparison with dereferencing a pointer followed by a linear search. Furthermore, supporting nested external scheduling (e.g., listing \ref{lst:nest-ext}) may now require additional searches for the \code{waitfor} statement to check if a routine is already queued.
785
786\begin{figure}
787\begin{cfacode}[caption={Example of nested external scheduling},label={lst:nest-ext}]
788monitor M {};
789void foo( M & mutex a ) {}
790void bar( M & mutex b ) {
791        //Nested in the waitfor(bar, c) call
792        waitfor(foo, b);
793}
794void baz( M & mutex c ) {
795        waitfor(bar, c);
796}
797
798\end{cfacode}
799\end{figure}
800
801Note that in the right picture, tasks need to always keep track of the monitors associated with mutex routines, and the routine mask needs to have both a function pointer and a set of monitors, as is discussed in the next section. These details are omitted from the picture for the sake of simplicity.
802
803At this point, a decision must be made between flexibility and performance. Many design decisions in \CFA achieve both flexibility and performance, for example polymorphic routines add significant flexibility but inlining them means the optimizer can easily remove any runtime cost. Here, however, the cost of flexibility cannot be trivially removed. In the end, the most flexible approach has been chosen since it allows users to write programs that would otherwise be  hard to write. This decision is based on the assumption that writing fast but inflexible locks is closer to a solved problem than writing locks that are as flexible as external scheduling in \CFA.
804
805% ======================================================================
806% ======================================================================
807\subsection{Multi-Monitor Scheduling}
808% ======================================================================
809% ======================================================================
810
811External scheduling, like internal scheduling, becomes significantly more complex when introducing multi-monitor syntax. Even in the simplest possible case, some new semantics needs to be established:
812\begin{cfacode}
813monitor M {};
814
815void f(M & mutex a);
816
817void g(M & mutex b, M & mutex c) {
818        waitfor(f); //two monitors M => unknown which to pass to f(M & mutex)
819}
820\end{cfacode}
821The obvious solution is to specify the correct monitor as follows:
822
823\begin{cfacode}
824monitor M {};
825
826void f(M & mutex a);
827
828void g(M & mutex a, M & mutex b) {
829        //wait for call to f with argument b
830        waitfor(f, b);
831}
832\end{cfacode}
833This syntax is unambiguous. Both locks are acquired and kept by \code{g}. When routine \code{f} is called, the lock for monitor \code{b} is temporarily transferred from \code{g} to \code{f} (while \code{g} still holds lock \code{a}). This behaviour can be extended to the multi-monitor \code{waitfor} statement as follows.
834
835\begin{cfacode}
836monitor M {};
837
838void f(M & mutex a, M & mutex b);
839
840void g(M & mutex a, M & mutex b) {
841        //wait for call to f with arguments a and b
842        waitfor(f, a, b);
843}
844\end{cfacode}
845
846Note that the set of monitors passed to the \code{waitfor} statement must be entirely contained in the set of monitors already acquired in the routine. \code{waitfor} used in any other context is undefined behaviour.
847
848An important behaviour to note is when a set of monitors only match partially:
849
850\begin{cfacode}
851mutex struct A {};
852
853mutex struct B {};
854
855void g(A & mutex a, B & mutex b) {
856        waitfor(f, a, b);
857}
858
859A a1, a2;
860B b;
861
862void foo() {
863        g(a1, b); //block on accept
864}
865
866void bar() {
867        f(a2, b); //fulfill cooperation
868}
869\end{cfacode}
870While the equivalent can happen when using internal scheduling, the fact that conditions are specific to a set of monitors means that users have to use two different condition variables. In both cases, partially matching monitor sets does not wakeup the waiting thread. It is also important to note that in the case of external scheduling the order of parameters is irrelevant; \code{waitfor(f,a,b)} and \code{waitfor(f,b,a)} are indistinguishable waiting condition.
871
872% ======================================================================
873% ======================================================================
874\subsection{\code{waitfor} Semantics}
875% ======================================================================
876% ======================================================================
877
878Syntactically, the \code{waitfor} statement takes a function identifier and a set of monitors. While the set of monitors can be any list of expressions, the function name is more restricted because the compiler validates at compile time the validity of the function type and the parameters used with the \code{waitfor} statement. It checks that the set of monitors passed in matches the requirements for a function call. Listing \ref{lst:waitfor} shows various usages of the waitfor statement and which are acceptable. The choice of the function type is made ignoring any non-\code{mutex} parameter. One limitation of the current implementation is that it does not handle overloading, but overloading is possible.
879\begin{figure}
880\begin{cfacode}[caption={Various correct and incorrect uses of the waitfor statement},label={lst:waitfor}]
881monitor A{};
882monitor B{};
883
884void f1( A & mutex );
885void f2( A & mutex, B & mutex );
886void f3( A & mutex, int );
887void f4( A & mutex, int );
888void f4( A & mutex, double );
889
890void foo( A & mutex a1, A & mutex a2, B & mutex b1, B & b2 ) {
891        A * ap = & a1;
892        void (*fp)( A & mutex ) = f1;
893
894        waitfor(f1, a1);     //Correct : 1 monitor case
895        waitfor(f2, a1, b1); //Correct : 2 monitor case
896        waitfor(f3, a1);     //Correct : non-mutex arguments are ignored
897        waitfor(f1, *ap);    //Correct : expression as argument
898
899        waitfor(f1, a1, b1); //Incorrect : Too many mutex arguments
900        waitfor(f2, a1);     //Incorrect : Too few mutex arguments
901        waitfor(f2, a1, a2); //Incorrect : Mutex arguments don't match
902        waitfor(f1, 1);      //Incorrect : 1 not a mutex argument
903        waitfor(f9, a1);     //Incorrect : f9 function does not exist
904        waitfor(*fp, a1 );   //Incorrect : fp not an identifier
905        waitfor(f4, a1);     //Incorrect : f4 ambiguous
906
907        waitfor(f2, a1, b2); //Undefined behaviour : b2 not mutex
908}
909\end{cfacode}
910\end{figure}
911
912Finally, for added flexibility, \CFA supports constructing a complex \code{waitfor} statement using the \code{or}, \code{timeout} and \code{else}. Indeed, multiple \code{waitfor} clauses can be chained together using \code{or}; this chain forms a single statement that uses baton pass to any function that fits one of the function+monitor set passed in. To enable users to tell which accepted function executed, \code{waitfor}s are followed by a statement (including the null statement \code{;}) or a compound statement, which is executed after the clause is triggered. A \code{waitfor} chain can also be followed by a \code{timeout}, to signify an upper bound on the wait, or an \code{else}, to signify that the call should be non-blocking, which checks for a matching function call already arrived and otherwise continues. Any and all of these clauses can be preceded by a \code{when} condition to dynamically toggle the accept clauses on or off based on some current state. Listing \ref{lst:waitfor2} demonstrates several complex masks and some incorrect ones.
913
914\begin{figure}
915\begin{cfacode}[caption={Various correct and incorrect uses of the or, else, and timeout clause around a waitfor statement},label={lst:waitfor2}]
916monitor A{};
917
918void f1( A & mutex );
919void f2( A & mutex );
920
921void foo( A & mutex a, bool b, int t ) {
922        //Correct : blocking case
923        waitfor(f1, a);
924
925        //Correct : block with statement
926        waitfor(f1, a) {
927                sout | "f1" | endl;
928        }
929
930        //Correct : block waiting for f1 or f2
931        waitfor(f1, a) {
932                sout | "f1" | endl;
933        } or waitfor(f2, a) {
934                sout | "f2" | endl;
935        }
936
937        //Correct : non-blocking case
938        waitfor(f1, a); or else;
939
940        //Correct : non-blocking case
941        waitfor(f1, a) {
942                sout | "blocked" | endl;
943        } or else {
944                sout | "didn't block" | endl;
945        }
946
947        //Correct : block at most 10 seconds
948        waitfor(f1, a) {
949                sout | "blocked" | endl;
950        } or timeout( 10`s) {
951                sout | "didn't block" | endl;
952        }
953
954        //Correct : block only if b == true
955        //if b == false, don't even make the call
956        when(b) waitfor(f1, a);
957
958        //Correct : block only if b == true
959        //if b == false, make non-blocking call
960        waitfor(f1, a); or when(!b) else;
961
962        //Correct : block only of t > 1
963        waitfor(f1, a); or when(t > 1) timeout(t); or else;
964
965        //Incorrect : timeout clause is dead code
966        waitfor(f1, a); or timeout(t); or else;
967
968        //Incorrect : order must be
969        //waitfor [or waitfor... [or timeout] [or else]]
970        timeout(t); or waitfor(f1, a); or else;
971}
972\end{cfacode}
973\end{figure}
974
975% ======================================================================
976% ======================================================================
977\subsection{Waiting For The Destructor}
978% ======================================================================
979% ======================================================================
980An interesting use for the \code{waitfor} statement is destructor semantics. Indeed, the \code{waitfor} statement can accept any \code{mutex} routine, which includes the destructor (see section \ref{data}). However, with the semantics discussed until now, waiting for the destructor does not make any sense, since using an object after its destructor is called is undefined behaviour. The simplest approach is to disallow \code{waitfor} on a destructor. However, a more expressive approach is to flip ordering of execution when waiting for the destructor, meaning that waiting for the destructor allows the destructor to run after the current \code{mutex} routine, similarly to how a condition is signalled.
981\begin{figure}
982\begin{cfacode}[caption={Example of an executor which executes action in series until the destructor is called.},label={lst:dtor-order}]
983monitor Executer {};
984struct  Action;
985
986void ^?{}   (Executer & mutex this);
987void execute(Executer & mutex this, const Action & );
988void run    (Executer & mutex this) {
989        while(true) {
990                   waitfor(execute, this);
991                or waitfor(^?{}   , this) {
992                        break;
993                }
994        }
995}
996\end{cfacode}
997\end{figure}
998For example, listing \ref{lst:dtor-order} shows an example of an executor with an infinite loop, which waits for the destructor to break out of this loop. Switching the semantic meaning introduces an idiomatic way to terminate a task and/or wait for its termination via destruction.
Note: See TracBrowser for help on using the repository browser.