
Sorting Out the Relationships Between Pairs of
Iterators, Values, and References

Krister Åhlander

Department of Information Technology, Uppsala University, Uppsala, Sweden
krister.ahlander@it.uu.se

Abstract. Motivated by a wish to sort an array A while simultaneously
permuting another array B, iteration over array pairs (A,B) is consid-
ered.

Traditional solutions to this problem require an adaption of either the
algorithm or of the data structure. The generic programming approach
described in this paper involves the construction of an iterator adaptor:
an iterator pair. The different approaches are implemented in C++ and
compared with respect to flexibility and performance.

Our design is also compared with another iterator-based design. When
examining our solution, we identify the relationship between a reference
type and a value type as an independent abstraction. We find that a valid
“reference type” to a value type T is not necessarily T&. The reference pair
developed in this paper serves as an example of a reference type which
refers to a standard value pair without being a standard reference.

Our understanding of the relationships between iterator pairs, value
pairs, and reference pairs, makes our design simpler than the alternative.
It is argued that a recognition of these relationships is useful in many
other generic programming contexts as well.

Keywords: C++, iterators, reference types.

1 Introduction

A colleague of ours encountered the following sorting problem while developing
the commercial finite element software FemLab 3 [1].

Motivating problem: Consider two huge arrays A and B, where, for
each index i, the numbers Ai and Bi are related. The task is to sort A
while maintaining the inter-array relationship.

There are three fundamentally different approaches to this problem.

Algorithm-based Adapt the algorithm. Based on any sorting algorithm, it is a
simple matter to write a special-purpose sorting algorithm which is dedicated
to solving this particular situation.

Data structure-based Reorganize the data structure. Instead of having a pair
of arrays, data could be organized as an array of pairs. It is then trivial to
accomplish the task by reusing a general-purpose sorting algorithm such as
C++ std::sort.

R. Glück and M. Lowry (Eds.): GPCE 2005, LNCS 3676, pp. 342–356, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Sorting Out Iterator Pairs, Value Pairs, and Reference Pairs 343

Iterator-based Reuse via generic programming (GP) as pioneered by Stepanov
and Lee in the design of STL, the C++ standard template library. Construct
an iterator adaptor which makes it possible to reuse std::sort without
redesigning the data structure.

For the developers of FemLab 3, it was not feasible to change the data struc-
ture. It would have required a major redesign of the implementation, and it is
also likely that it would have degraded the performance of other parts of the
program. Regarding the iterator-based approach, my colleague said that he con-
sidered the third alternative for a while, but settled for the more pragmatic first
alternative.

The motivation behind the present paper is to discuss the third alternative,
the iterator-based GP approach. The key idea is to develop a pair iterator,
a concept similar to the zip_iterator found in Boost [2]. One such solution
has previously been developed by Williams [3]. Independently, we designed an
alternative implementation. We compare the iterator-based versions with the
other approaches with respect to flexibility and performance. The iterator-based
approach is of course superior with respect to flexibility, but when it comes to
performance we find that the other approaches are faster.

However, the main issue which we want to discuss concerns the insights drawn
from comparing the iterator-based designs with each other. For random access
iterators, Williams introduces OwningRefPair as a value type in order to prop-
erly handle dereferencing. In our approach, we introduce pairs of references as a
convenient way to accomplish the same task. When studying the C++ standard
in more detail, we realize that our solution is not even standard compliant: the
standard requires that a random access iterator with value type T should have a
reference type T& [4–Ch. 24.1]. Similar restrictions remain also in the discussions
of the new iterator types [5]. However, we argue that the assumption that a value
type and a reference type always are related in this way is unnecessarily strict.
Our notion of a reference pair which behaves as a reference to a pair of values
illustrates that a value type T may well have different reference types, not only
T&.

Our presentation is organized as follows. Section 2 reviews the basics of C++
iterators. Section 3 recapitulates Williams’ implementation. Our approach is pre-
sented in Section 4. Section 5 compares the GP approaches with the traditional
approaches, particularly with respect to performance. Section 6 elaborates fur-
ther on the relationships between iterator types, value types and reference types.
Finally, Section 7 summarizes our findings.

2 Review of C++ Iterators

In order to make the paper accessible to a broader audience, we commence with
a brief review of C++ iterators, containers and algorithms. STL was proposed by
Stepanov and Lee in 1993, and soon thereafter adopted by the C++ standard.
See, e.g., the preface of [6] for an account of the historical background. Even

344 K. Åhlander

though STL has its limitatations, see, e.g., [5], it has proven to be a very useful
tool for C++ programmers today.

STL provides generic containers and algorithms for many common program-
ming tasks. The containers and algorithms communicate via iterators. A key
feature of STL is the use of C++ templates. This makes the design type safe
and thus more robust, as well as fast, because the template instantiation allows
for efficient code optimization in link time.

Iterators have different semantics, depending on their category. The iterator
categories defined by STL are input iterators, output iterators, forward iterators,
bidirectional iterators and random access iterators. The most basic of these iter-
ator categories are input and output iterators, which provide input and output
access, respectively, as well as forward traversal. Forward iterators support both
input and output access, but are still limited to forward traversal. Bidirectional
iterators also support backward traversal, whereas random access iterators, in
addition to the requirements above, support random access.

The different categories allow the algorithms of STL to put different require-
ments on the iterators they use. The std::copy algorithm, for example, requires
only input and output iterators, whereas for example the std::sort algorithm
expects random access iterators.

Different containers provide iterators of different categories. An STL vector,
for instance, provides random access iterators, whereas an STL list only pro-
vides bidirectional iterators. But STL containers are not the only C++ mecha-
nisms that can be manipulated via iterators. The design of the iterator’s interface
has been carefully crafted to allow other data structures to be accessed through
iterators. An input stream, for example, can be adapted and used as an input
iterator, and a standard pointer does, in fact, qualify as a random access iterator.

As a simple example which illustrates the last point, let us consider an array
of hundred time stamps (hours and minutes) which is to be sorted. Assume that
the array is declared by

typedef std::pair<int,int> TimeStamp; // hour and minute
TimeStamp times[100]; // array of time stamps

After proper initialization, it is then a simple matter to sort the times by a call
to the standard sorting routine:

std::sort(times,times+100);

There are, of course, lots of things going on behind the scene. The call to
the generic sort is instantiated with pointers of type TimeStamp*, but the al-
gorithm needs to know more information about the underlying data types, for
example the corresponding value type and reference type. In this case, these
types are TimeStamp and TimeStamp&, respectively, and this is figured out by
using the auxiliary class iterator_traits. Another detail is that this call to
std::sort expects operator< to be used for comparing two arguments of type
const TimeStamp&. Since a time stamp is nothing but a standard pair instan-
tiated with two integers, this operator is provided automatically, assuming a
lexicographical ordering of the first and second members of the pair.

Sorting Out Iterator Pairs, Value Pairs, and Reference Pairs 345

Table 1. The common category for a pair of iterators is deduced from the categories
of the underlying iterators. Note that an input iterator and an output iterator can not
be paired.

input output forward bidirect. random
input input N/A input input input

output N/A output output output output
forward input output forward forward forward
bidirect. input output forward bidirect. bidirect.
random input output forward bidirect. random

It is, as already mentioned, not the purpose of the present section to ex-
plain STL in detail, but rather to review some of the concepts needed to discuss
generic approaches to our motivating problem. We also notice that the data
structure-based solution sketched in the introduction is very similar to the ex-
ample of sorting time stamps above. However, it is not always possible or viable
to restructure data in this way, which motivates our search for other approaches.

3 Pairing Off Iterators

In this section, we briefly summarize the solution reported by Williams [3]. In-
terestingly, his motivation for studying the problem was the same as ours, but
beside the required support for random access iterators he also handles the other
iterator categories. An auxiliary class, CommonCategory, is used to find the ap-
propriate iterator category according to Table 1.

Based on the common category of the iterators, the value type and the ref-
erence type of the pair iterator, which he calls PairIt, are chosen. Consider two
iterators I1 and I2 whose value types are T1 and T2, respectively. Using various
auxiliary classes, Williams creates the value types and the reference types of a
pair iterator PairIt<I1,I2> as follows.

– If the pair iterator is an input iterator, the value type is a plain pair,
std::pair<T1,T2>, and the reference type is pair<T1,T2>&. On dereferenc-
ing, the underlying iterators are dereferenced and an internal pair is created
which holds the result. A reference to the internal value is returned.

– If the pair iterator is an output iterator, Williams follows the standard which
prescribes that the value type should be void1 The reference type, however,
needs to be something different, since assignments to an object of this type
should forward the assignment to the underlying iterators. Williams solves
this task by introducing an OutputPair<I1,I2> class, which holds references
to the underlying iterators.

– Williams recognizes that the “biggest headache” is to support forward, bidi-
rectional, and random access iterators. Here, the standard prescribes that

1 This requirement is unnecessarily strict and a relaxation has consequently been
proposed [7–Article 445].

346 K. Åhlander

if the value type is T, the reference type should be T&. Williams resolves
these requirements by introducing OwningRefPair<T1,T2> as the value type,
and consequently OwningRefPair<T1,T2>& as the reference type. The class
OwningRefPair<T1,T2> contains T1& first and T2& second as public
members. These members may refer to external data, or to data kept in
an internal buffer. The handling of the internal buffer requires a utility class
RawMem, in order to avoid the overhead of dynamic memory allocation.

In addition to figuring out the appropriate types to export by the iterator and
the handling of dereferencing, the iterator should of course also provide means
of traversal etc. These operations are all fairly straight-forward in the literal
sense of the word, since they just forward the appropriate call to the underlying
iterators. Therefore, we will not discuss the remaining operations further here.

In order to address the motivating problem, it is not necessary to know all
the details behind the scene. Listing 1 illustrates how the pair iterator could be
used to solve the problem at hand.

After the first call to std::sort, A is sorted and the elements of B are in
the order 2, 3, 4, 1, since the inter-array relationship is maintained. Notice that,

// A comparison function
bool compFirst(const std::pair<int,int> &l,

const std::pair<int,int> &r) {
return l.first < r.first;

}

// A comparison functor
struct CompSecond {
template<typename T1, typename T2>
bool operator()(const T1 &l, const T2 &r) {

return l.second < r.second;
}

};

int main() {
// Two "huge" arrays
int A[] = { 8,5,6,7 }, B[] = { 1,2,3,4 };

// An iterator pair for the pair of arrays
IteratorPair<int*, int*> p(A,B);

// Reuse standard C++ sort
std::sort(p,p+4,compFirst);
std::sort(p,p+4,CompSecond());

}

Listing 1: The iterator pair concept offers a convenient way to sort a pair of
arrays while maintaining an inter-array relationship

Sorting Out Iterator Pairs, Value Pairs, and Reference Pairs 347

since B originally was sorted, B now contains an encoding of the permutation
used to sort A. After the second call to std::sort, both arrays are restored into
their original state, since the functor used in this call compares with respect to
values in the second array.

Williams also observes that the example’s usage of a comparison function,
as in the first call to sort, requires unnecessary conversions between the value
type of the pair iterator, which is OwningRefPair<int,int>, and the standard
pair. Therefore, a functor such as Comp with a parameterized binary predicate
should be used instead, as in the second call. In Section 4.2, we present another
way of handling the comparisons.

4 An Alternative Design

When solving the motivating problem, we arrived at a design where the key idea
of an iterator pair is similar to Williams’ solution. However, we focused only
on random access iterators, and the comparisons between our designs therefore
apply to this category only.

The biggest difference between Williams’ design and ours concerns the value
type and the reference type: We argue that the natural value type for an iter-
ator pair should be a standard pair, and the reference type should be a pair of
references:

template <class Iterator1, class Iterator2>
class IteratorPair
{
public:
typedef typename iterator_traits<Iterator1>::value_type T1;
typedef typename iterator_traits<Iterator2>::value_type T2;
typedef typename iterator_traits<Iterator1>::reference R1;
typedef typename iterator_traits<Iterator2>::reference R2;
typedef pair<T1,T2> value_type;
typedef const ReferencePair<R1,R2> reference;
// ...

};

It is not possible to use std::pair<T1&,T2&>, since it would call for the
instantiation of the types T1&& and T2&&, and references to references are not
allowed. Therefore, we designed the ReferencePair<R1,R2>.

4.1 Reference Pairs and Reference Traits

Reference pairs are developed in parallel with iterator pairs. To obtain appropri-
ate types related to a reference, we find it convenient to also introduce reference
traits, see Listing 2. The Reference traits class is similar to the standard iterator
traits, and exports a value type and a reference type. In addition, inspired by [8],
reference traits also export a parameter type. Listing 3 shows how the reference
pair uses the reference traits. Note the usage of Parameter in the constructor.
For instance, consider dereferencing of an iterator of type

348 K. Åhlander

IteratorPair<int*,IteratorPair<double*,char*> >

which leads to a reference of type

const ReferencePair<int&, const ReferencePair<double&,char&> >

The constructor of this type would have int& as its first parameter, which is the
same as its R1 type. Its second parameter, however, would be

const ReferencePair<double&,char&>&

which is not the same as R2, but a reference to R2 instead.
We also point out that the default constructor is private, since a reference pair

always should refer to something. Moreover, the assignment is marked as const,
since the references are not altered, only what they refer to. The importance of
these details are emphasized in Section 6.

// ReferenceTrait provide typedefs for a reference.
template<typename R>
struct ReferenceTrait {
typedef typename R::Value Value;
typedef typename R::Reference Reference;
typedef typename R::Parameter Parameter;

};

// For standard reference to type T, default typedefs are provided
template<typename T>
struct ReferenceTrait<T&>
{
typedef T Value;
typedef T& Reference;
typedef T& Parameter;

};

Listing 2: The reference trait is similar to the iterator trait

4.2 Sorting with operator<

The classes sketched above can be used for the motivating problem, exactly as in
Listing 1. The only change necessary is to use our IteratorPair instead of the
class PairIt, developed by Williams. It is natural to ask, though, if operator<
which is defined on std::pair can be used when sorting a pair of arrays, cf. the
example in Section 2. The answer is no, at least not without some extra ma-
chinery. The reason is that the sorting algorithm typically makes comparisons
between pivot which is of value type, and the object *it returned upon deref-
erencing, and this is of reference type. It would require an implicit conversion
from RefererencePair<T1,T2> to pair<T1,T2>, but this is not resolved by the
template overloading mechanism [4–Section 14.8.3]. Therefore, we provide para-
meterized comparison operators between pairs and reference pairs:

Sorting Out Iterator Pairs, Value Pairs, and Reference Pairs 349

template<typename R1, typename R2>
struct ReferencePair {
typedef typename ReferenceTrait<R1>::Value Value1;
typedef typename ReferenceTrait<R2>::Value Value2;
typedef typename ReferenceTrait<R1>::Parameter Parameter1;
typedef typename ReferenceTrait<R2>::Parameter Parameter2;
typedef pair<Value1,Value2> Value;
typedef ReferencePair<R1,R2> Reference;
typedef const ReferencePair<Parameter1,Parameter2>& Parameter;

R1 first; R2 second;

ReferencePair(Parameter1 a, Parameter2 b)
: first(a), second(b) { }

ReferencePair(const ReferencePair& x)
: first(x.first), second(x.second) { }

const ReferencePair & operator=(const ReferencePair & x) const {
first = x.first; second = x.second;

}

const ReferencePair & operator=(const Value & x) const {
first = x.first; second = x.second;

}

operator Value () const {
return Value (first, second);

}
//...

};

Listing 3: The reference pair uses the reference trait

template<typename T1, typename T2, typename R1, typename R2>
inline bool operator<(const pair<T1, T2>&, const ReferencePair<R1, R2>&);

In addition, we provide overloaded comparisons between reference pairs. The
extra operators introduced offers a working solution to our problem, without
the unnecessary construction of temporary pair objects which implicit conver-
sions requires. However, the usage of a C++ functor as in Listing 1 is probably
more elegant, since it does not clutter the name space with several overloaded
comparison operators.

5 Comparing the Approaches

We have summarized two different iterator-based versions which solve the moti-
vating problem, but how do these compare with the other approaches discussed
in Section 1 and with each other?

350 K. Åhlander

Below, we first discuss a few obvious advantages with the GP approach. Next,
we present performance measurements.

5.1 Advantages of the Iterator-Based Approach

The GP paradigm allows new data structures to reuse algorithms. The following
code snippet illustrates how three arrays are permuted simultaneously. The call
to std::sort will sort the vector v1 and permute the others accordingly.

int arr1[] = { 2,4,1,3 }; vector<int> v1(arr1,arr1+4);
double arr2[] = { 3.1, 2.2, 5.5, 0.1 }; char arr3[] = "RAND";

typedef vector<int>::iterator iterator;
typedef IteratorPair<iterator,IteratorPair<double*,char*> > MyIterator;
MyIterator p(v1.begin(),IteratorPair<double*,char*>(arr2,arr3));

sort(p,p+4);

Traditional approaches would have required either a new sorting routine, or
a restructuring of data. In either case, we find that the GP approach implies less
programming work.

The GP paradigm allows new algorithms to reuse data structures. In our ex-
ample, the iterator pair and the auxiliary classes were developed in order to
reuse the standard std::sort for the data structure of the motivating problem.
Thanks to the GP paradigm, we do not only solve this task, but we also get the
possibility to use the pairs of arrays with other algorithms as a bonus.

As a trivial example, the following code snippet illustrates how the std::copy
algorithm may be used in order to copy the values in the pair of arrays, A and
B, into an array of pairs, C.

int A[] = { 2,4,1,3 }; int B[] = { 20,40,10,30 };

typedef IteratorPair<int*, int*> MyIteratorPair;
typedef pair<int, int> MyValue;

MyIteratorPair AB(A,B);
MyValue C[4];

copy(AB,AB+4,C);

This additional power of the GP approach is not achieved with traditional
approaches.

5.2 Performance

The iterator-based approach clearly has major advantages, but can it compete
with respect to performance? To investigate this, we carried out several experi-
ments. Our performance experiments were carried out on a SUN UltraSPARC-
IIIi using the GNU compiler version 3.4.3 for Solaris 2.9, with optimization

Sorting Out Iterator Pairs, Value Pairs, and Reference Pairs 351

flag -O. For all our experiments, we present minimum time measurements of 5
consecutive iterations, in order to decrease random effects such as irregular work
load etc.

To begin with, we had of course to implement the traditional approaches
as well. The data-based approach was trivial to implement, see Section 2. We
needed to provide comparison functors though, since we do not want the second
member of the pair to affect the comparison. The algorithmic-based approach re-
quired more work, since we had to be careful to use the same underlying sorting
algorithm in all experiments. Based on the library std::sort routine, we devel-
oped a special version according to the algorithm-based approach. This routine
takes three random access iterators as parameters, indicating the beginning and
the end of the first array, which holds the keys, and the beginning of the second
array, which holds the related data. The g++ “introspective” sort routine is
a variation of quick sort, but it uses a limit on the recursion depth to avoid
the possibility of O(N2) complexity [9]. If the recursion limit is reached, the
algorithm switches to heap sort, thereby guaranteeing a worst case complexity
of O(N log N). In our experiments, we use arrays with random data, and it is
therefore very unlikely that the the recursion limit is encountered. To simplify
the development of our special sorting routine, we decided not to implement the
full introspective sorting algorithm, but only the quick sort recursion. In order
to make the comparisons fair, we discarded the very few experiments where the
recursion depth was reached.

Our first experiment investigates the performance when addressing the origi-
nal, motivating problem. For different array sizes, we create a pair of arrays with
random data. We measure the time to permute both arrays such that the first ar-
ray becomes sorted, while maintaing the inter-array relationship. Table 2 shows
the time measurements in milliseconds for the special sorting routine (Algo), for
standard sort of an array of pairs (Data), for our own GP implementation (GP 1),
and for Williams GP implementation (GP 2). The results are quite discouraging,
since the traditional sorting routines outperform the iterator-based versions. We
note though, that our GP version seems more efficient than Williams’, probably
because of the extra memory handling present in the OwningRefPair class.

Since the iterator-based approaches do incur some overhead, we had expected
somewhat worse performance for the GP versions, but we were surprised that
the degradation was as large as it was. In order to estimate an acceptable—or
at least a not easily avoidable—level of performance degradation, we studied the
performance drop when using the standard std::reverse_iterator, see Ta-
ble 3. The iterators used are double* (Forward), reverse_iterator<double*>
(Reverse), and finally a reverse iterator of a reverse iterator (Reverse2). Since
the performance degradation is considerable also in this case, we find that we,
at least with this compiler, may have to accept the performance degradation of
the pair iterators too. A plausible explanation for the performance difference is
that the optimizer may keep plain pointers in registers, when they are passed
as parameters to functions, whereas this is not possible for more complex types

352 K. Åhlander

Table 2. Time measurements (milliseconds) when sorting pairs of arrays of different
sizes (N), using the algorithmic and data-based approaches as well as the iterator-based
approaches, where GP 1 is our implementation

N Algo Data GP 1 GP 2
100000 40 50 110 130
200000 110 120 220 270
300000 170 180 350 480
400000 230 260 520 640
500000 300 320 640 830

Table 3. Time measurements (milliseconds) when sorting arrays of different sizes (N),
using forward iterators, reverse iterators, and reverse reverse iterators

N Forward Reverse Reverse2

100000 30 60 50
200000 70 100 110
300000 110 160 170
400000 150 220 220
500000 200 280 260

Table 4. Time measurements (milliseconds) when sorting pairs of arrays of integer keys
and images, using the algorithmic and data-based approaches as well as the iterator-
based approaches, where GP 1 is our implementation. The fastest method, Perm, uses
the permutation obtained from sorting the keys.

N Algo Data GP 1 GP 2 Perm
1000 890 1080 1130 1080 100
2000 2010 2490 2530 1810 220
3000 3080 2950 3900 3710 320
4000 4180 6310 3580 3250 290
5000 3440 5310 4690 5490 550

Table 5. Time measurements (milliseconds) when sorting pairs of arrays of images, us-
ing the algorithmic and data-based approaches as well as the iterator-based approaches,
where GP 1 is our implementation

N Algo Data GP 1 GP 2
100 450 480 480 250
200 1040 1060 1150 610
300 1600 1670 1760 1090
400 2440 2450 2490 1380
500 3000 3200 3130 1900

such as pair iterators. This explanation is supported by the fact that Reverse2

is not much worse than Reverse.
We have found that the special sorting routines are faster than the GP ap-

proaches for sorting pairs of simple types, but how do they perform if we sort

Sorting Out Iterator Pairs, Value Pairs, and Reference Pairs 353

arrays of more complex data? As an example, consider the sorting of pairs of
integer keys and images, where each image is 256×256 characters. Table 4 shows
the results for this case. The special sort routine is—apart from the permuta-
tion based sorting algorithm discussed below—still fastest, but the difference is
smaller. One reason for this should be the extra overhead of copying images. In
this case, we also find that Williams’ implementation performs better than ours.
We believe that this is due to his handling of temporary storage. For small data
types, it incurs some overhead, but this overhead seems to pay off if the underly-
ing data types consume more memory. This trend is even more significant when
we sort pairs of arrays of images, see Table 5. In this case we use images both as
keys and as data, and the (somewhat artificial) comparison operator compares
two images with respect to their total brightness. In this experiment, the GP2
implementation is actually the winner.

Finally, we remark that it is a simple matter, see Listing 1, to use the pair
iterator and standard sort in order to obtain the actual permutation when sorting
a set of keys. If the objective is to sort an array of keys and a corresponding
array of memory consuming images, it is thus easy to first sort only the keys and
obtain the permutation, and then use the permutation to sort the images. With
this approach we need much fewer calls to image assignment, an operation which
is quite time consuming. As seen in the last column of Table 4, this solution is
much faster than any of the other approaches.

6 A Discussion on References

When comparing the design of the two GP approaches, we note that our solution
is not standard compliant, since the reference type of the iterator pair is not
a standard C++ reference to the value type. However, we do not think that
it is a mere coincidence that we are able to solve the problem at hand. Our
implementation works since the reference pair we use behaves as a reference.
Our example illustrates that the assumption that a value type T only has one
valid reference type T& is more strict than it has to be. This is similar to the more
well-known situation that there may be different pointer types—also known as
random access iterators—which refer to the same value type.

Sections 8.3.2 and 8.5.3 of [4] discuss references in detail. To keep the discus-
sion simple, we ignore const and volatile qualifiers here and suggest that the
key properties of a reference to type T are the following.

1. A reference must be initialized by an object of type T.
2. Changes to the reference affect only the object being referenced.
3. The reference cannot be changed to refer to another object.
4. The reference can be converted to the value type.
5. The value type can be deduced from the reference.

Thus, it is possible to define a valid reference type to type T as any type whose
objects meet these criteria. We then find that the value type pair<T1,T2> admits
not only the usual pair<T1,T2>& but also const ReferencePair<T1&,T2&> as
a valid reference type.

354 K. Åhlander

As demonstrated by the time measurements in the previous section, our usage
of ReferencePair as the reference type to a pair iterator seems to perform
better, at least for simple value types, than the alternative implemented by
Williams. We also think that our design is simpler, since it is not necessary to
introduce an auxiliary class RawMem for handling an internal buffer. In addition
to these arguments, we would like to motivate the soundness of our design by
the following argument.

Let I1 and I2 be two iterator types, whose value types and reference types
are T1, R1 and T2, R2, respectively, and assume that the value type of R1 is
T1 and the value type of R2 is T2. Let us now consider the pairing Pair2

of two types to construct a new type. Thus, we may construct Pair<I1,I2>,
Pair<T1,T2>, and Pair<R1,R2> as new types. We now argue that relationships
between types should be preserved, in such a way that Pair<I1,I2> should
have Pair<T1,T2> as value type and Pair<R1,R2> should be its reference type.
Moreover, Pair<R1,R2> should have Pair<T1,T2> as its value type. This ar-
gument is similar to the formal definition of a functor, which maps objects
(in our case types) to objects, and morphisms (relationships between types)
to morphisms. The point we make is that IteratorPair<I1,I2>, the standard
std::pair<T1,T2>, and ReferencePair<R1,R2> preserve these relationships.

We therefore find the recognition of the reference relation as an entity in
its own right well motivated. This extra level of indirection may also be use-
ful in other contexts. As a simple example (cf. the discussion in [10–Ch. 2.4]),
we may use the reference concept in order to write a generic Swap (or, per-
haps a ref_swap) routine, as shown in Listing 4. The template meta function
ValueOfType is here used to deduce the appropriate value type corresponding to
a valid reference. It corresponds to the type transformation remove_reference
found in the Boost metaprogramming library. Note that this version of Swap also
handles swapping of two objects of the same value type referred to by different
reference types. This situation could also be resolved by parameter overloading.
This approach is however not very practical, since the number of overloaded
swap functions grow exponentially with the number of valid reference types to
a given value type.

7 Conclusions

We have investigated different approaches to the problem of sorting a pair of
arrays. We find that the algorithm-based version performs best, but it requires
the development of a dedicated sorting routine for this particular situation. Run-
ning time is of course only one software metric, and we stress that flexibility,
robustness, and programmer time in many situations are more important. The
data-based version also performs well and it is much easier to implement, if stan-
dard generic tools are used. The disadvantage is that the data-structures have to

2 We deliberately use capital P here, in order to distinguish this concept from
std::pair.

Sorting Out Iterator Pairs, Value Pairs, and Reference Pairs 355

be restructured, which often means that this approach is inadequate. Therefore,
we advocate the iterator-based approach.

We present the design of two different iterator-based approaches, ours, and
an implementation by Williams [3]. We acknowledge that his implementation
is more comprehensive, since he addresses all iterator categories, not only the

template<typename V>
struct ValueOfType {
typedef V type;

};

template<typename V>
struct ValueOfType<V&> {
typedef V type;

};

template<typename R1, typename R2>
struct ValueOfType<const ReferencePair<R1,R2> > {
typedef pair< typename ValueOfType<R1>::type,

typename ValueOfType<R2>::type > type;
};

template<typename R1, typename R2>
inline void
Swap(R1& a, R2& b)
{
const typename ValueOfType<R1>::type tmp = a;
a = b;
b = tmp;

}

int main {
IteratorPair<int*, int*> ip1, ip2;
pair<int,int> vp3;

// ...

Swap(*ip1, *ip2);
Swap(*ip1, vp3);
Swap(vp3, *ip1);
Swap((*ip2).first, ip2->second);

}

Listing 4: The Swap routine is generic with respect to valid references. The main
program illustrates four different calls to Swap. The first call to Swap shows that
ReferencePair behaves as a reference. The second and third calls illustrate calls
where different reference types are used to swap the same value type. The last
call simply swaps two integers

356 K. Åhlander

random access iterator category required to solve the motivating problem. How-
ever, we find that our approach to treating random access iterators is simpler,
because we do not need to introduce an auxiliary class for managing an internal
memory buffer.

We notice, though, that our implementation is not standard compliant. The
reason for this is that the standard tacitly assumes that there is a one-to-one
correspondance between value types and reference types. We believe that this is
too strict. In our opinion, there may be several different types which can refer to
the same value type, and this is the insight which simplifies our design. We think
that this notion should be useful also in other situations where the objective is
to develop generic solutions.

Acknowledgements

I thank Stefan Engblom for bringing my attention to the motivating problem. I
also thank Adis Hodzic for valuable comments on the manuscript.

References

1. Comsol homepage, http://www.comsol.com/.
2. Boost MPL homepage, http://www.boost.org/libs/mpl/doc/index.html.
3. Williams, A.: Pairing off iterators. Overload (2001) Avaliable at

http://web.onetel.com/~anthony_w/cplusplus/pair_iterators.pdf, 2005-04-
07.

4. The C++ Standard, Incorporating Technical Corrigendum No. 1. 2 edn. John
Wiley & Sons, Ltd (2003)

5. Abrahams, D., Siek, J., Witt, T.: New iterator concepts (2003)
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1550.htm.

6. Musser, D., Saini, A.: STL Tutorial and Reference Guide. Addison-Wesley (1996)
7. C++ standard library active issues list (revision 35) (2005) http://www.open-std.

org/jtc1/sc22/wg21/docs/lwg-active.html 2005-03-04.
8. Alexandrescu, A.: Modern C++ Design: Generic Programming and Design Pat-

terns Applied. Addison-Wesley (2001)
9. Musser, D.: Introspective sorting and selection algorithms. Software–Practice and

Experience 8 (1997) 983–993
10. Abrahams, D., Gurtovoy, A.: C++ Template Metaprogramming: Concepts, Tools,

and Techniques from Boost and beyond. Addison-Wesley (2005)

http://www.comsol.com/
http://www.boost.org/libs/mpl/doc/index.html
http://web.onetel.com/~anthony_w/cplusplus/pair_iterators.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1550.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-active.html
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-active.html

	Introduction
	Review of C++ Iterators
	Pairing Off Iterators
	An Alternative Design
	Reference Pairs and Reference Traits
	Sorting with operator<

	Comparing the Approaches
	Advantages of the Iterator-Based Approach
	Performance

	A Discussion on References
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

