\chapter{\texorpdfstring{Unwinding in \CFA}{Unwinding in Cforall}} Stack unwinding is the process of removing stack frames (activations) from the stack. On function entry and return, unwinding is handled directly by the code embedded in the function. Usually, the stack-frame size is known statically based on parameters and local variable declarations. For dynamically-sized local variables, a runtime computation is necessary to know the frame size. Finally, a function's frame-size may change during execution as local variables (static or dynamic sized) go in and out of scope. Allocating/deallocating stack space is usually an $O(1)$ operation achieved by bumping the hardware stack-pointer up or down as needed. Unwinding across multiple stack frames is more complex because individual stack management code associated with each frame is bypassed. That is, the location of a function's frame code is largely unknown and dispersed throughout the function, hence the current stack-frame size managed by that code is also unknown. Hence, code unwinding across frames does not have direct knowledge about what is on the stack, and hence, how much of the stack needs to be removed. The traditional unwinding mechanism for C is implemented by saving a snap-shot of a function's state with @setjmp@ and restoring that snap-shot with @longjmp@. This approach bypasses the need to know stack details by simply reseting to a snap-shot of an arbitrary but existing function frame on the stack. It is up to the programmer to ensure the snap-shot is valid when it is reset, making the code fragile with potential errors that are difficult to debug because the stack becomes corrupted. However, many languages define cleanup actions that have to be taken when something is deallocated from the stack or blocks end, such as running a variable's destructor or a @try@ statement's @finally@ clause. Handling these mechanisms requires walking the stack and checking each stack frame for these potential actions. For exceptions, it must be possible to walk the stack frames in search of try statements with handlers to perform exception matching. For termination exceptions, it must be possible to unwind all stack frames from the throw to the matching catch, and each of these frames must be checked for cleanup actions. Stack walking is where the most of the complexity and expense of exception handling comes from. One of the most popular tools for stack management is libunwind, a low level library that provides tools for stack walking and unwinding. What follows is an overview of all the relevant features of libunwind and how \CFA uses them to implement its exception handling. \section{libunwind Usage} \CFA uses two primary functions in libunwind to create most of its exceptional control-flow: @_Unwind_RaiseException@ and @_Unwind_ForcedUnwind@. Their operation is divided into two phases: search and clean-up. The search phase -- phase 1 -- is used to scan the stack but not unwinding it. The clean-up phase -- phase 2 -- is used for unwinding. The raise-exception function uses both phases. It starts by searching for a handler, and if found, performs a clean-up phase to unwind the stack to the handler. If a handler is not found, control returns allowing the exception-handling policy for unhandled exception to be executed. During both phases, the raise-exception function searches down the stack, calling each function's \emph{personality function}. A personality function performs three tasks, although not all have to be present. The tasks performed are decided by the actions provided. @_Unwind_Action@ is a bitmask of possible actions and an argument of this type is passed into the personality function. \begin{itemize} \item \begin{sloppypar} @_UA_SEARCH_PHASE@ is passed in for the search phase and tells the personality function to check for handlers. If there is a handler in a stack frame, as defined by the language, the personality function returns @_URC_HANDLER_FOUND@; otherwise it return @_URC_CONTINUE_UNWIND@. \end{sloppypar} \item @_UA_CLEANUP_PHASE@ is passed in during the clean-up phase and means part or all of the stack frame is removed. The personality function does whatever clean-up the language defines (such as running destructors/finalizers) and then generally returns @_URC_CONTINUE_UNWIND@. \item @_UA_HANDLER_FRAME@ means the personality function must install a handler. It is also passed in during the clean-up phase and is in addition to the clean-up action. libunwind provides several helpers for the personality function. Once it is done, the personality function returns @_URC_INSTALL_CONTEXT@. \end{itemize} The personality function is given a number of other arguments. Some arguments are for compatibility, and there is the @struct _Unwind_Context@ pointer which is passed to many helpers to get information about the current stack frame. For cancellation, forced-unwind only performs the clean-up phase. It takes three arguments: a pointer to the exception, a pointer to the stop function and a pointer to the stop parameter. It does most of the same actions as phase two of raise-exception but passes in an extra action to the personality function on each stack frame, @_UA_FORCE_UNWIND@, which means a handler cannot be installed. As well, forced-unwind calls the stop function each time it steps into a frame, before calling the personality function. The stop function receives all the same arguments as the personality function and the stop parameter supplied to forced-unwind. The stop function is called one more time at the end of the stack after all stack frames have been removed. The standard API marks this frame by setting the stack pointer inside the context passed to the stop function. However both GCC and Clang add an extra action for this case @_UA_END_OF_STACK@. Each time the stop function is called, it can do one or two things. When it is not the end of the stack it can return @_URC_NO_REASON@ to continue unwinding. % Is there a reason that NO_REASON is used instead of CONTINUE_UNWIND? The other option is to use some other means to transfer control elsewhere and never return to its caller. libunwind provides no additional tools for alternate transfers of control. \section{\texorpdfstring{\CFA Implementation}{Cforall Implementation}} To use libunwind, \CFA provides several wrappers, its own storage, personality functions, and a stop function. The wrappers perform three tasks: set-up, clean-up and controlling the unwinding. The set-up allocates a copy of the \CFA exception into a handler to control its lifetime, and stores it in the exception context. Clean-up -- run when control exits a catch clause and returns to normal code -- frees the exception copy. % It however does not set up the unwind exception so we can't use any inter- % runtime/language features. Also the exception context is global. The core control code is called every time a throw -- after set-up -- or re-throw is run. It uses raise-exception to search for a handler and to run it if one is found. If no handler is found and raise-exception returns, then forced-unwind is called to run all destructors on the stack before terminating the process. The stop function is simple. It checks for the end of stack flag to see if unwinding is finished. If so, it calls @exit@ to end the process, otherwise it returns with no-reason to continue unwinding. % Yeah, this is going to have to change. The personality routine is more complex because it has to obtain information about the function by scanning the Language Specific Data Area (LSDA). This step allows a single personality function to be used for multiple functions and lets that personality function figure out exactly where in the function execution is, what is currently in the stack frame, and what handlers should be checked. % Not that we do that yet. It is also necessary to generate the LSDA, which is difficult. It requires knowledge about the location of the instruction pointer and stack layout, which varies with compiler and optimization levels. Fortunately, for frames where there are only destructors, GCC's attribute cleanup with the @-fexception@ flag is sufficient to handle unwinding. The only functions that require more information are those containing @try@ statements. Specifically, only @try@ statements with @catch@ clauses need to be transformed. The @try@ statement is converted into a series of closures that can access other parts of the function according to scoping rules but can be passed around. The @catch@ clauses are converted into two functions: the match function and the handler function. Together the match function and the catch function form the code that runs when an exception passes out of the guarded block for a try statement. The match function is used during the search phase: it is passed an exception and checks each handler to see if the raised exception matches the handler exception. It returns an index that represents which handler matched or there is no match. The catch function is used during the clean-up phase, it is passed an exception and the index of a handler. It casts the exception to the exception type declared in that handler and then runs the handler's body. These three functions are passed to @try_terminate@, which is an % Maybe I shouldn't quote that, it isn't its actual name. internal hand-written function that has its own personality function and custom assembly LSDA for doing the exception handling in \CFA. During normal execution, this function calls the try function and then return. It is only when exceptions are thrown that anything interesting happens. During the search phase the personality function gets the pointer to the match function and calls it. If the match function returns a handler index, the personality function saves it and reports that the handler has been found, otherwise unwinding continues. During the clean-up phase, the personality function only performs an action, when a handler is found in a frame. For each found frame, the personality function installs the handler, which sets the instruction pointer in @try_terminate@ to an otherwise unused section that calls the catch function, passing it the current exception and handler index. @try_terminate@ returns as soon as the catch function returns. At this point control has returned to normal control flow. {\color{blue}PAB: Maybe a diagram would be helpful?}