source: doc/generic_types/generic_types.tex @ c1fb1f2f

ADTaaron-thesisarm-ehcleanup-dtorsdeferred_resndemanglerenumforall-pointer-decayjacob/cs343-translationjenkins-sandboxnew-astnew-ast-unique-exprnew-envno_listpersistent-indexerpthread-emulationqualifiedEnumresolv-newwith_gc
Last change on this file since c1fb1f2f was c1fb1f2f, checked in by Aaron Moss <a3moss@…>, 6 years ago

Update abstract and related work

  • Property mode set to 100644
File size: 66.7 KB
Line 
1% take of review (for line numbers) and anonymous (for anonymization) on submission
2\documentclass[format=acmlarge, anonymous, review]{acmart}
3
4\usepackage{listings}   % For code listings
5
6% Useful macros
7\newcommand{\CFA}{C$\mathbf\forall$} % Cforall symbolic name
8\newcommand{\CC}{\rm C\kern-.1em\hbox{+\kern-.25em+}} % C++ symbolic name
9\newcommand{\CCeleven}{\rm C\kern-.1em\hbox{+\kern-.25em+}11} % C++11 symbolic name
10\newcommand{\CCfourteen}{\rm C\kern-.1em\hbox{+\kern-.25em+}14} % C++14 symbolic name
11\newcommand{\CCseventeen}{\rm C\kern-.1em\hbox{+\kern-.25em+}17} % C++17 symbolic name
12\newcommand{\CCtwenty}{\rm C\kern-.1em\hbox{+\kern-.25em+}20} % C++20 symbolic name
13
14\newcommand{\TODO}{\textbf{TODO}}
15\newcommand{\eg}{\textit{e}.\textit{g}.}
16\newcommand{\ie}{\textit{i}.\textit{e}.}
17\newcommand{\etc}{\textit{etc}.}
18
19% CFA programming language, based on ANSI C (with some gcc additions)
20\lstdefinelanguage{CFA}[ANSI]{C}{
21        morekeywords={_Alignas,_Alignof,__alignof,__alignof__,asm,__asm,__asm__,_At,_Atomic,__attribute,__attribute__,auto,
22                _Bool,catch,catchResume,choose,_Complex,__complex,__complex__,__const,__const__,disable,dtype,enable,__extension__,
23                fallthrough,fallthru,finally,forall,ftype,_Generic,_Imaginary,inline,__label__,lvalue,_Noreturn,one_t,otype,restrict,size_t,sized,_Static_assert,
24                _Thread_local,throw,throwResume,trait,try,typeof,__typeof,__typeof__,zero_t},
25}%
26
27\lstset{
28language=CFA,
29columns=fullflexible,
30basicstyle=\linespread{0.9}\sf,                                                 % reduce line spacing and use sanserif font
31stringstyle=\tt,                                                                                % use typewriter font
32tabsize=4,                                                                                              % 4 space tabbing
33xleftmargin=\parindent,                                                                 % indent code to paragraph indentation
34% extendedchars=true,                                                                   % allow ASCII characters in the range 128-255
35% escapechar=§,                                                                                 % LaTeX escape in CFA code §...§ (section symbol), emacs: C-q M-'
36mathescape=true,                                                                                % LaTeX math escape in CFA code $...$
37keepspaces=true,                                                                                %
38showstringspaces=false,                                                                 % do not show spaces with cup
39showlines=true,                                                                                 % show blank lines at end of code
40aboveskip=4pt,                                                                                  % spacing above/below code block
41belowskip=3pt,
42% replace/adjust listing characters that look bad in sanserif
43literate={-}{\raisebox{-0.15ex}{\texttt{-}}}1 {^}{\raisebox{0.6ex}{$\scriptscriptstyle\land\,$}}1
44        {~}{\raisebox{0.3ex}{$\scriptstyle\sim\,$}}1 {_}{\makebox[1.2ex][c]{\rule{1ex}{0.1ex}}}1 {`}{\ttfamily\upshape\hspace*{-0.1ex}`}1
45        {<-}{$\leftarrow$}2 {=>}{$\Rightarrow$}2 {->}{$\rightarrow$}2,
46% moredelim=**[is][\color{red}]{®}{®},                                  % red highlighting ®...® (registered trademark symbol) emacs: C-q M-.
47% moredelim=**[is][\color{blue}]{ß}{ß},                                 % blue highlighting ß...ß (sharp s symbol) emacs: C-q M-_
48% moredelim=**[is][\color{OliveGreen}]{¢}{¢},                   % green highlighting ¢...¢ (cent symbol) emacs: C-q M-"
49% moredelim=[is][\lstset{keywords={}}]{¶}{¶},                   % keyword escape ¶...¶ (pilcrow symbol) emacs: C-q M-^
50}% lstset
51
52% inline code @...@
53\lstMakeShortInline@
54
55% ACM Information
56\citestyle{acmauthoryear}
57
58\acmJournal{PACMPL}
59
60\title{Generic and Tuple Types with Efficient Dynamic Layout in \CFA{}}
61
62\author{Aaron Moss}
63\affiliation{%
64        \institution{University of Waterloo}
65        \department{David R. Cheriton School of Computer Science}
66        \streetaddress{Davis Centre, University of Waterloo}
67        \city{Waterloo}
68        \state{ON}
69        \postcode{N2L 3G1}
70        \country{Canada}
71}
72\email{a3moss@uwaterloo.ca}
73
74\author{Robert Schluntz}
75\affiliation{%
76        \institution{University of Waterloo}
77        \department{David R. Cheriton School of Computer Science}
78        \streetaddress{Davis Centre, University of Waterloo}
79        \city{Waterloo}
80        \state{ON}
81        \postcode{N2L 3G1}
82        \country{Canada}
83}
84\email{rschlunt@uwaterloo.ca}
85
86\author{Peter Buhr}
87\affiliation{%
88        \institution{University of Waterloo}
89        \department{David R. Cheriton School of Computer Science}
90        \streetaddress{Davis Centre, University of Waterloo}
91        \city{Waterloo}
92        \state{ON}
93        \postcode{N2L 3G1}
94        \country{Canada}
95}
96\email{pabuhr@uwaterloo.ca}
97
98\terms{generic, tuple, types}
99\keywords{generic types, tuple types, polymorphic functions, C, Cforall}
100
101\begin{CCSXML}
102<ccs2012>
103<concept>
104<concept_id>10011007.10011006.10011008.10011024.10011025</concept_id>
105<concept_desc>Software and its engineering~Polymorphism</concept_desc>
106<concept_significance>500</concept_significance>
107</concept>
108<concept>
109<concept_id>10011007.10011006.10011008.10011024.10011028</concept_id>
110<concept_desc>Software and its engineering~Data types and structures</concept_desc>
111<concept_significance>500</concept_significance>
112</concept>
113<concept>
114<concept_id>10011007.10011006.10011041.10011047</concept_id>
115<concept_desc>Software and its engineering~Source code generation</concept_desc>
116<concept_significance>300</concept_significance>
117</concept>
118</ccs2012>
119\end{CCSXML}
120
121\ccsdesc[500]{Software and its engineering~Polymorphism}
122\ccsdesc[500]{Software and its engineering~Data types and structures}
123\ccsdesc[300]{Software and its engineering~Source code generation}
124
125\begin{abstract}
126The C programming language is a foundational technology for modern computing, with millions of lines of code implementing everything from commercial operating systems to hobby projects. This installed base of code and the programmers who produced it represent a massive software engineering investment spanning decades. Nonetheless, C, first standardized over thirty years ago, lacks many features that make programming in more modern languages safer and more productive. The goal of the \CFA{} project is to create an extension of C which provides modern safety and productivity features while still providing strong backwards compatibility with C. Particularly, \CFA{} is designed to have an orthogonal feature set based closely on the C programming paradigm, so that \CFA{} features can be added incrementally to existing C codebases, and C programmers can learn \CFA{} extensions on an as-needed basis, preserving investment in existing engineers and code. This paper describes how generic and tuple types are implemented in \CFA{} in accordance with these principles.
127\end{abstract}
128
129\begin{document}
130
131\maketitle
132
133\section{Introduction \& Background}
134
135\CFA{}\footnote{Pronounced ``C-for-all'', and written \CFA{} or Cforall.} is an evolutionary extension of the C programming language which aims to add modern language features to C while maintaining both source compatibility with C and a familiar mental model for programmers. Four key design goals were set out in the original design of \CFA{} \citep{Bilson03}:
136\begin{enumerate}
137\item The behaviour of standard C code must remain the same when translated by a \CFA{} compiler as when translated by a C compiler.
138\item Standard C code must be as fast and as small when translated by a \CFA{} compiler as when translated by a C compiler.
139\item \CFA{} code must be at least as portable as standard C code.
140\item Extensions introduced by \CFA{} must be translated in the most efficient way possible.
141\end{enumerate}
142The purpose of these goals is to ensure that existing C codebases can be converted to \CFA{} incrementally and with minimal effort, and that programmers who already know C can productively produce \CFA{} code without extensive training beyond the extension features they wish to employ. In its current implementation, \CFA{} is compiled by translating it to GCC-dialect C, allowing it to leverage the portability and code optimizations provided by GCC, meeting goals (1)-(3).
143
144\CFA{} has been previously extended with polymorphic functions and name overloading (including operator overloading) \citep{Bilson03}, and deterministically-executed constructors and destructors \citep{Schluntz17}. This paper describes how generic and tuple types are designed and implemented in \CFA{} in accordance with both the backward compatibility goals and existing features described above.
145
146\subsection{Polymorphic Functions}
147\label{sec:poly-fns}
148
149\CFA{}'s polymorphism was originally formalized by \citet{Ditchfield92}, and first implemented by \citet{Bilson03}. The signature feature of \CFA{} is parametric-polymorphic functions; such functions are written using a @forall@ clause (which gives the language its name):
150\begin{lstlisting}
151forall(otype T)
152T identity(T x) {
153    return x;
154}
155
156int forty_two = identity(42); // T is bound to int, forty_two == 42
157\end{lstlisting}
158The @identity@ function above can be applied to any complete object type (or ``@otype@''). The type variable @T@ is transformed into a set of additional implicit parameters to @identity@, which encode sufficient information about @T@ to create and return a variable of that type. The \CFA{} implementation passes the size and alignment of the type represented by an @otype@ parameter, as well as an assignment operator, constructor, copy constructor and destructor. If this extra information is not needed, the type parameter can be declared as @dtype T@, where @dtype@ is short for ``data type''.
159
160Here, the runtime cost of polymorphism is spread over each polymorphic call, due to passing more arguments to polymorphic functions; preliminary experiments have shown this overhead to be similar to \CC{} virtual function calls. An advantage of this design is that, unlike \CC{} template functions, \CFA{} @forall@ functions are compatible with separate compilation.
161
162Since bare polymorphic types do not provide a great range of available operations, \CFA{} provides a \emph{type assertion} mechanism to provide further information about a type:
163\begin{lstlisting}
164forall(otype T | { T twice(T); })
165T four_times(T x) {
166    return twice( twice(x) );
167}
168
169double twice(double d) { return d * 2.0; } // (1)
170
171double magic = four_times(10.5); // T is bound to double, uses (1) to satisfy type assertion
172\end{lstlisting}
173These type assertions may be either variable or function declarations that depend on a polymorphic type variable. @four_times@ can only be called with an argument for which there exists a function named @twice@ that can take that argument and return another value of the same type; a pointer to the appropriate @twice@ function is passed as an additional implicit parameter to the call of @four_times@.
174
175Monomorphic specializations of polymorphic functions can themselves be used to satisfy type assertions. For instance, @twice@ could have been defined using the \CFA{} syntax for operator overloading as:
176\begin{lstlisting}
177forall(otype S | { S ?+?(S, S); })
178S twice(S x) { return x + x; }  // (2)
179\end{lstlisting} 
180This version of @twice@ works for any type @S@ that has an addition operator defined for it, and it could have been used to satisfy the type assertion on @four_times@.
181The translator accomplishes this by creating a wrapper function calling @twice // (2)@ with @S@ bound to @double@, then providing this wrapper function to @four_times@\footnote{\lstinline@twice // (2)@ could also have had a type parameter named \lstinline@T@; \CFA{} specifies renaming of the type parameters, which would avoid the name conflict with the type variable \lstinline@T@ of \lstinline@four_times@.}.
182
183\subsection{Traits}
184
185\CFA{} provides \emph{traits} as a means to name a group of type assertions, as in the example below:
186\begin{lstlisting}
187trait has_magnitude(otype T) {
188    bool ?<?(T, T);  // comparison operator for T
189    T -?(T);  // negation operator for T
190    void ?{}(T*, zero_t);  // constructor from 0 literal
191};
192
193forall(otype M | has_magnitude(M))
194M abs( M m ) {
195    M zero = { 0 };  // uses zero_t constructor from trait
196    return m < zero ? -m : m;
197}
198
199forall(otype M | has_magnitude(M))
200M max_magnitude( M a, M b ) {
201    return abs(a) < abs(b) ? b : a;
202}
203\end{lstlisting}
204This capability allows specifying the same set of assertions in multiple locations, without the repetition and likelihood of mistakes that come with manually writing them out for each function declaration.
205
206@otype@ is essentially syntactic sugar for the following trait:
207\begin{lstlisting}
208trait otype(dtype T | sized(T)) {
209        // sized is a compiler-provided pseudo-trait for types with known size & alignment
210        void ?{}(T*);  // default constructor
211        void ?{}(T*, T);  // copy constructor
212        void ?=?(T*, T);  // assignment operator
213        void ^?{}(T*);  // destructor
214};
215\end{lstlisting}
216Given this information, variables of polymorphic type can be treated as if they were a complete struct type -- they can be stack-allocated using the @alloca@ compiler builtin, default or copy-initialized, assigned, and deleted. As an example, the @abs@ function above would produce generated code something like the following (simplified for clarity and brevity):
217\begin{lstlisting}
218void abs( size_t _sizeof_M, size_t _alignof_M,
219                void (*_ctor_M)(void*), void (*_copy_M)(void*, void*),
220                void (*_assign_M)(void*, void*), void (*_dtor_M)(void*),
221                bool (*_lt_M)(void*, void*), void (*_neg_M)(void*, void*),
222        void (*_ctor_M_zero)(void*, int),
223                void* m, void* _rtn ) {  // polymorphic parameter and return passed as void*
224        // M zero = { 0 };
225        void* zero = alloca(_sizeof_M);  // stack allocate 0 temporary
226        _ctor_M_zero(zero, 0);  // initialize using zero_t constructor
227        // return m < zero ? -m : m;
228        void *_tmp = alloca(_sizeof_M)
229        _copy_M( _rtn,  // copy-initialize return value
230                _lt_M( m, zero ) ?  // check condition
231                 (_neg_M(m, _tmp), _tmp) :  // negate m
232                 m);
233        _dtor_M(_tmp); _dtor_M(zero);  // destroy temporaries
234}
235\end{lstlisting}
236
237Semantically, traits are simply a named lists of type assertions, but they may be used for many of the same purposes that interfaces in Java or abstract base classes in \CC{} are used for. Unlike Java interfaces or \CC{} base classes, \CFA{} types do not explicitly state any inheritance relationship to traits they satisfy; this can be considered a form of structural inheritance, similar to implementation of an interface in Go, as opposed to the nominal inheritance model of Java and \CC{}. Nominal inheritance can be simulated with traits using marker variables or functions:
238\begin{lstlisting}
239trait nominal(otype T) {
240    T is_nominal;
241};
242
243int is_nominal;  // int now satisfies the nominal trait
244{
245    char is_nominal; // char satisfies the nominal trait
246}
247// char no longer satisfies the nominal trait here 
248\end{lstlisting}
249
250Traits, however, are significantly more powerful than nominal-inheritance interfaces; firstly, due to the scoping rules of the declarations that satisfy a trait's type assertions, a type may not satisfy a trait everywhere that the type is declared, as with @char@ and the @nominal@ trait above. Secondly, traits may be used to declare a relationship among multiple types, a property that may be difficult or impossible to represent in nominal-inheritance type systems:
251\begin{lstlisting}
252trait pointer_like(otype Ptr, otype El) {
253    lvalue El *?(Ptr); // Ptr can be dereferenced into a modifiable value of type El
254}
255
256struct list {
257    int value;
258    list *next;  // may omit "struct" on type names
259};
260
261typedef list *list_iterator;
262
263lvalue int *?( list_iterator it ) {
264    return it->value;
265}
266\end{lstlisting}
267
268In the example above, @(list_iterator, int)@ satisfies @pointer_like@ by the user-defined dereference function, and @(list_iterator, list)@ also satisfies @pointer_like@ by the built-in dereference operator for pointers. Given a declaration @list_iterator it@, @*it@ can be either an @int@ or a @list@, with the meaning disambiguated by context (\eg, @int x = *it;@ interprets @*it@ as an @int@, while @(*it).value = 42;@ interprets @*it@ as a @list@).
269While a nominal-inheritance system with associated types could model one of those two relationships by making @El@ an associated type of @Ptr@ in the @pointer_like@ implementation, few such systems could model both relationships simultaneously.
270
271\section{Generic Types}
272
273One of the known shortcomings of standard C is that it does not provide reusable type-safe abstractions for generic data structures and algorithms. Broadly speaking, there are three approaches to create data structures in C. One approach is to write bespoke data structures for each context in which they are needed. While this approach is flexible and supports integration with the C type-checker and tooling, it is also tedious and error-prone, especially for data structures more complicated than a singly-linked list. A second approach is to use @void*@-based polymorphism. This approach is taken by the C standard library functions @qsort@ and @bsearch@, and does allow the use of common code for common functionality. However, basing all polymorphism on @void*@ eliminates the type-checker's ability to ensure that argument types are properly matched, as well as adding pointer indirection and dynamic allocation to algorithms and data structures which would not otherwise require them. A third approach to generic code is to use pre-processor macros to generate it -- this approach does allow the generated code to be both generic and type-checked, though any errors produced may be difficult to read. Furthermore, writing and invoking C code as preprocessor macros is unnatural and somewhat inflexible.
274
275Other C-like languages such as \CC{} and Java use \emph{generic types} to produce type-safe abstract data types. The \CFA{} team has chosen to implement generic types as well, with the constraints that the generic types design for \CFA{} must integrate efficiently and naturally with the existing polymorphic functions in \CFA{}, while retaining backwards compatibility with C; maintaining separate compilation is a particularly important constraint on the design. However, where the concrete parameters of the generic type are known, there should not be extra overhead for the use of a generic type.
276
277A generic type can be declared by placing a @forall@ specifier on a @struct@ or @union@ declaration, and instantiated using a parenthesized list of types after the type name:
278\begin{lstlisting}
279forall(otype R, otype S) struct pair {
280    R first;
281    S second;
282};
283
284forall(otype T)
285T value( pair(const char*, T) p ) { return p.second; }
286
287forall(dtype F, otype T)
288T value_p( pair(F*, T*) p ) { return *p.second; }
289
290pair(const char*, int) p = { "magic", 42 };
291int magic = value( p );
292
293pair(void*, int*) q = { 0, &p.second };
294magic = value_p( q );
295double d = 1.0;
296pair(double*, double*) r = { &d, &d };
297d = value_p( r );
298\end{lstlisting}
299
300\CFA{} classifies generic types as either \emph{concrete} or \emph{dynamic}. Dynamic generic types vary in their in-memory layout depending on their type parameters, while concrete generic types have a fixed memory layout regardless of type parameters. A type may have polymorphic parameters but still be concrete; \CFA{} refers to such types as \emph{dtype-static}. Polymorphic pointers are an example of dtype-static types -- @forall(dtype T) T*@ is a polymorphic type, but for any @T@ chosen, @T*@ will have exactly the same in-memory representation as a @void*@, and can therefore be represented by a @void*@ in code generation.
301
302\CFA{} generic types may also specify constraints on their argument type that will be checked by the compiler. For example, consider the following declaration of a sorted set type, which will ensure that the set key supports comparison and tests for equality:
303\begin{lstlisting}
304forall(otype Key | { bool ?==?(Key, Key); bool ?<? (Key, Key); })
305struct sorted_set;
306\end{lstlisting}
307
308\subsection{Concrete Generic Types}
309
310The \CFA{} translator instantiates concrete generic types by template-expanding them to fresh struct types; concrete generic types can therefore be used with zero runtime overhead. To enable interoperation between equivalent instantiations of a generic type, the translator saves the set of instantiations currently in scope and re-uses the generated struct declarations where appropriate. As an example, the concrete instantiation for @pair(const char*, int)@ would look something like this:
311\begin{lstlisting}
312struct _pair_conc1 {
313        const char* first;
314        int second;
315};
316\end{lstlisting}
317
318A concrete generic type with dtype-static parameters is also expanded to a struct type, but this struct type is used for all matching instantiations. In the example above, the @pair(F*, T*)@ parameter to @value_p@ is such a type; its expansion would look something like this, and be used as the type of the variables @q@ and @r@ as well, with casts for member access where appropriate:
319\begin{lstlisting}
320struct _pair_conc0 {
321        void* first;
322        void* second;
323};
324\end{lstlisting}
325
326\subsection{Dynamic Generic Types}
327
328Though \CFA{} implements concrete generic types efficiently, it also has a fully-general system for computing with dynamic generic types. As mentioned in Section~\ref{sec:poly-fns}, @otype@ function parameters (in fact all @sized@ polymorphic parameters) come with implicit size and alignment parameters provided by the caller. Dynamic generic structs also come with an \emph{offset array} which contains the offsets of each member of the struct\footnote{Dynamic generic unions need no such offset array, as all members are at offset 0.}. Access to members\footnote{The \lstinline@offsetof@ macro is implmented similarly.} of a dynamic generic struct is provided by adding the corresponding member of the offset array to the struct pointer at runtime, essentially moving a compile-time offset calculation to runtime where neccessary.
329
330These offset arrays are staticly generated where possible. If a dynamic generic type is declared to be passed or returned by value from a polymorphic function, the translator can safely assume that the generic type is complete (that is, has a known layout) at any call-site, and the offset array is passed from the caller; if the generic type is concrete at the call site this offset array can even be statically generated using the C @offsetof@ macro. As an example, @p.second@ in the @value@ function above is implemented as @*(p + _offsetof_pair[1])@, where @p@ is a @void*@, and @_offsetof_pair@ is the offset array passed in to @value@ for @pair(const char*, T)@. The offset array @_offsetof_pair@ is generated at the call site as @size_t _offsetof_pair[] = { offsetof(_pair_conc1, first), offsetof(_pair_conc1, second) };@.
331
332In some cases the offset arrays cannot be staticly generated. For instance, modularity is generally produced in C by including an opaque forward-declaration of a struct and associated accessor and mutator routines in a header file, with the actual implementations in a separately-compiled \texttt{.c} file. \CFA{} supports this pattern for generic types, and in tis instance the caller does not know the actual layout or size of the dynamic generic type, and only holds it by pointer. The \CFA{} translator automatically generates \emph{layout functions} for cases where the size, alignment, and offset array of a generic struct cannot be passed in to a function from that function's caller. These layout functions take as arguments pointers to size and alignment variables and a caller-allocated array of member offsets, as well as the size and alignment of all @sized@ parameters to the generic struct (un-@sized@ parameters are forbidden from the language from being used in a context which affects layout). Results of these layout functions are cached so that they are only computed once per type per function.%, as in the example below for @pair@.
333% \begin{lstlisting}
334% static inline void _layoutof_pair(size_t* _szeof_pair, size_t* _alignof_pair, size_t* _offsetof_pair,
335%               size_t _szeof_R, size_t _alignof_R, size_t _szeof_S, size_t _alignof_S) {
336%     *_szeof_pair = 0; // default values
337%     *_alignof_pair = 1;
338
339%       // add offset, size, and alignment of first field
340%     _offsetof_pair[0] = *_szeof_pair;
341%     *_szeof_pair += _szeof_R;
342%     if ( *_alignof_pair < _alignof_R ) *_alignof_pair = _alignof_R;
343       
344%       // padding, offset, size, and alignment of second field
345%     if ( *_szeof_pair & (_alignof_S - 1) )
346%               *_szeof_pair += (_alignof_S - ( *_szeof_pair & (_alignof_S - 1) ) );
347%     _offsetof_pair[1] = *_szeof_pair;
348%     *_szeof_pair += _szeof_S;
349%     if ( *_alignof_pair < _alignof_S ) *_alignof_pair = _alignof_S;
350
351%       // pad to struct alignment
352%     if ( *_szeof_pair & (*_alignof_pair - 1) )
353%               *_szeof_pair += ( *_alignof_pair - ( *_szeof_pair & (*_alignof_pair - 1) ) );
354% }
355% \end{lstlisting}
356
357Layout functions also allow generic types to be used in a function definition without reflecting them in the function signature. For instance, a function that strips duplicate values from an unsorted @vector(T)@ would likely have a pointer to the vector as its only explicit parameter, but internally may use some sort of @set(T)@ to test for duplicate values. This function could acquire the layout for @set(T)@ by calling its layout function with the layout of @T@ implicitly passed into the function.
358
359Whether a type is concrete, dtype-static, or dynamic is decided based solely on the type parameters and @forall@ clause on the struct declaration. This allows opaque forward declarations of generic types like @forall(otype T) struct Box;@ -- like in C, all uses of @Box(T)@ can be in a separately compiled translation unit, and callers from other translation units will know the proper calling conventions to use. If the definition of a struct type was included in the determination of dynamic or concrete, some further types may be recognized as dtype-static (\eg, @forall(otype T) struct unique_ptr { T* p };@ does not depend on @T@ for its layout, but the existence of an @otype@ parameter means that it \emph{could}.), but preserving separate compilation (and the associated C compatibility) in this way is judged to be an appropriate trade-off.
360
361\subsection{Applications}
362\label{sec:generic-apps}
363
364The re-use of dtype-static struct instantiations enables some useful programming patterns at zero runtime cost. The most important such pattern is using @forall(dtype T) T*@ as a type-checked replacement for @void*@, as in this example, which takes a @qsort@ or @bsearch@-compatible comparison routine and creates a similar lexicographic comparison for pairs of pointers:
365\begin{lstlisting}
366forall(dtype T)
367int lexcmp( pair(T*, T*)* a, pair(T*, T*)* b, int (*cmp)(T*, T*) ) {
368        int c = cmp(a->first, b->first);
369        if ( c == 0 ) c = cmp(a->second, b->second);
370        return c;
371}
372\end{lstlisting}
373Since @pair(T*, T*)@ is a concrete type, there are no added implicit parameters to @lexcmp@, so the code generated by \CFA{} will be effectively identical to a version of this written in standard C using @void*@, yet the \CFA{} version will be type-checked to ensure that the fields of both pairs and the arguments to the comparison function match in type.
374
375Another useful pattern enabled by re-used dtype-static type instantiations is zero-cost ``tag'' structs. Sometimes a particular bit of information is only useful for type-checking, and can be omitted at runtime. Tag structs can be used to provide this information to the compiler without further runtime overhead, as in the following example:
376\begin{lstlisting}
377forall(dtype Unit) struct scalar { unsigned long value; };
378
379struct metres {};
380struct litres {};
381
382forall(dtype U)
383scalar(U) ?+?(scalar(U) a, scalar(U) b) {
384        return (scalar(U)){ a.value + b.value };
385}
386
387scalar(metres) half_marathon = { 21093 };
388scalar(litres) swimming_pool = { 2500000 };
389
390scalar(metres) marathon = half_marathon + half_marathon;
391scalar(litres) two_pools = swimming_pool + swimming_pool;
392marathon + swimming_pool; // ERROR -- caught by compiler
393\end{lstlisting}
394@scalar@ is a dtype-static type, so all uses of it will use a single struct definition, containing only a single @unsigned long@, and can share the same implementations of common routines like @?+?@ -- these implementations may even be separately compiled, unlike \CC{} template functions. However, the \CFA{} type-checker will ensure that matching types are used by all calls to @?+?@, preventing nonsensical computations like adding the length of a marathon to the volume of an olympic pool.
395
396\section{Tuples}
397
398The @pair(R, S)@ generic type used as an example in the previous section can be considered a special case of a more general \emph{tuple} data structure. The authors have implemented tuples in \CFA{} as an extension to C. The \CFA{} tuple design is particularly motivated by two use cases: \emph{multiple-return-value functions} and \emph{variadic functions}.
399
400In standard C, functions can return at most one value. This restriction results in code which emulates functions with multiple return values by \emph{aggregation} or by \emph{aliasing}. In the former situation, the function designer creates a record type that combines all of the return values into a single type. Of note, the designer must come up with a name for the return type and for each of its fields. Unnecessary naming is a common programming language issue, introducing verbosity and a complication of the user's mental model. As such, this technique is effective when used sparingly, but can quickly get out of hand if many functions need to return different combinations of types. In the latter approach, the designer simulates multiple return values by passing the additional return values as pointer parameters. The pointer parameters are assigned inside of the routine body to emulate a return. Notably, using this approach, the caller is directly responsible for allocating storage for the additional temporary return values. This complicates the call site with a sequence of variable declarations leading up to the call. Also, while a disciplined use of @const@ can give clues about whether a pointer parameter is going to be used as an out parameter, it is not immediately obvious from only the routine signature whether the callee expects such a parameter to be initialized before the call. Furthermore, while many C routines that accept pointers are designed so that it is safe to pass @NULL@ as a parameter, there are many C routines that are not null-safe. On a related note, C does not provide a standard mechanism to state that a parameter is going to be used as an additional return value, which makes the job of ensuring that a value is returned more difficult for the compiler.
401
402C does provide a mechanism for variadic functions through manipulation of @va_list@ objects, but it is notoriously not type-safe. A variadic function is one which contains at least one parameter, followed by @...@ as the last token in the parameter list. In particular, some form of \emph{argument descriptor} is needed to inform the function of the number of arguments and their types, commonly a format string or counter parameter. It is important to note that both of these mechanisms are inherently redundant, because they require the user to specify information that the compiler knows explicitly. This required repetition is error prone, because it is easy for the user to add or remove arguments without updating the argument descriptor. In addition, C requires the programmer to hard code all of the possible expected types. As a result, it is cumbersome to write a variadic function that is open to extension. For example, consider a simple function which sums $N$ @int@s:
403\begin{lstlisting}
404int sum(int N, ...) {
405  va_list args;
406  va_start(args, N);  // must manually specify last non-variadic argument
407  int ret = 0;
408  while(N) {
409    ret += va_arg(args, int);  // must specify type
410    N--;
411  }
412  va_end(args);
413  return ret;
414}
415sum(3, 10, 20, 30);  // must keep initial counter argument in sync
416\end{lstlisting}
417
418The @va_list@ type is a special C data type that abstracts variadic argument manipulation. The @va_start@ macro initializes a @va_list@, given the last named parameter. Each use of the @va_arg@ macro allows access to the next variadic argument, given a type. Since the function signature does not provide any information on what types can be passed to a variadic function, the compiler does not perform any error checks on a variadic call. As such, it is possible to pass any value to the @sum@ function, including pointers, floating-point numbers, and structures. In the case where the provided type is not compatible with the argument's actual type after default argument promotions, or if too many arguments are accessed, the behaviour is undefined \citep{C11}. Furthermore, there is no way to perform the necessary error checks in the @sum@ function at run-time, since type information is not carried into the function body. Since they rely on programmer convention rather than compile-time checks, variadic functions are generally unsafe.
419
420In practice, compilers can provide warnings to help mitigate some of the problems. For example, GCC provides the @format@ attribute to specify that a function uses a format string, which allows the compiler to perform some checks related to the standard format specifiers. Unfortunately, this does not permit extensions to the format string syntax, so a programmer cannot extend the attribute to warn for mismatches with custom types.
421
422\subsection{Tuple Expressions}
423
424The tuple extensions in \CFA{} can express multiple return values and variadic function parameters in an efficient and type-safe manner. \CFA{} introduces \emph{tuple expressions} and \emph{tuple types}. A tuple expression is an expression producing a fixed-size, ordered list of values of heterogeneous types. The type of a tuple expression is the tuple of the subexpression types, or a \emph{tuple type}. In \CFA{}, a tuple expression is denoted by a comma-separated list of expressions enclosed in square brackets. For example, the expression @[5, 'x', 10.5]@ has type @[int, char, double]@. The previous expression has three \emph{components}. Each component in a tuple expression can be any \CFA{} expression, including another tuple expression. The order of evaluation of the components in a tuple expression is unspecified, to allow a compiler the greatest flexibility for program optimization. It is, however, guaranteed that each component of a tuple expression is evaluated for side-effects, even if the result is not used. Multiple-return-value functions can equivalently be called \emph{tuple-returning functions}.
425
426\CFA{} allows declaration of \emph{tuple variables}, variables of tuple type. For example:
427\begin{lstlisting}
428[int, char] most_frequent(const char*);
429
430const char* str = "hello, world!";
431[int, char] freq = most_frequent(str);
432printf("%s -- %d %c\n", str, freq);
433\end{lstlisting}
434In this example, the type of the @freq@ and the return type of @most_frequent@ are both tuple types. Also of note is how the tuple expression @freq@ is implicitly flattened into separate @int@ and @char@ arguments to @printf@; this code snippet could have been shortened by replacing the last two lines with @printf("%s -- %d %c\n", str, most_frequent(str));@ using exactly the same mechanism.
435
436In addition to variables of tuple type, it is also possible to have pointers to tuples, and arrays of tuples. Tuple types can be composed of any types, except for array types, since arrays are not of fixed size, which makes tuple assignment difficult when a tuple contains an array.
437\begin{lstlisting}
438[double, int] di;
439[double, int] * pdi
440[double, int] adi[10];
441\end{lstlisting}
442This examples declares a variable of type @[double, int]@, a variable of type pointer to @[double, int]@, and an array of ten @[double, int]@.
443
444\subsection{Flattening and Restructuring}
445
446In function call contexts, tuples support implicit flattening and restructuring conversions. Tuple flattening recursively expands a tuple into the list of its basic components. Tuple structuring packages a list of expressions into a value of tuple type.
447\begin{lstlisting}
448int f(int, int);
449int g([int, int]);
450int h(int, [int, int]);
451[int, int] x;
452int y;
453
454f(x);      // flatten
455g(y, 10);  // structure
456h(x, y);   // flatten & structure
457\end{lstlisting}
458In \CFA{}, each of these calls is valid. In the call to @f@, @x@ is implicitly flattened so that the components of @x@ are passed as the two arguments to @f@. For the call to @g@, the values @y@ and @10@ are structured into a single argument of type @[int, int]@ to match the type of the parameter of @g@. Finally, in the call to @h@, @y@ is flattened to yield an argument list of length 3, of which the first component of @x@ is passed as the first parameter of @h@, and the second component of @x@ and @y@ are structured into the second argument of type @[int, int]@. The flexible structure of tuples permits a simple and expressive function call syntax to work seamlessly with both single- and multiple-return-value functions, and with any number of arguments of arbitrarily complex structure.
459
460In {K-W C} \citep{Buhr94a,Till89} there were 4 tuple coercions: opening, closing, flattening, and structuring. Opening coerces a tuple value into a tuple of values, while closing converts a tuple of values into a single tuple value. Flattening coerces a nested tuple into a flat tuple, i.e. it takes a tuple with tuple components and expands it into a tuple with only non-tuple components. Structuring moves in the opposite direction, i.e. it takes a flat tuple value and provides structure by introducing nested tuple components.
461
462In \CFA{}, the design has been simplified to require only the two conversions previously described, which trigger only in function call and return situations. Specifically, the expression resolution algorithm examines all of the possible alternatives for an expression to determine the best match. In resolving a function call expression, each combination of function value and list of argument alternatives is examined. Given a particular argument list and function value, the list of argument alternatives is flattened to produce a list of non-tuple valued expressions. Then the flattened list of expressions is compared with each value in the function's parameter list. If the parameter's type is not a tuple type, then the current argument value is unified with the parameter type, and on success the next argument and parameter are examined. If the parameter's type is a tuple type, then the structuring conversion takes effect, recursively applying the parameter matching algorithm using the tuple's component types as the parameter list types. Assuming a successful unification, eventually the algorithm gets to the end of the tuple type, which causes all of the matching expressions to be consumed and structured into a tuple expression. For example, in
463\begin{lstlisting}
464int f(int, [double, int]);
465f([5, 10.2], 4);
466\end{lstlisting}
467There is only a single definition of @f@, and 3 arguments with only single interpretations. First, the argument alternative list @[5, 10.2], 4@ is flattened to produce the argument list @5, 10.2, 4@. Next, the parameter matching algorithm begins, with $P =~$@int@ and $A =~$@int@, which unifies exactly. Moving to the next parameter and argument, $P =~$@[double, int]@ and $A =~$@double@. This time, the parameter is a tuple type, so the algorithm applies recursively with $P' =~$@double@ and $A =~$@double@, which unifies exactly. Then $P' =~$@int@ and $A =~$@double@, which again unifies exactly. At this point, the end of $P'$ has been reached, so the arguments @10.2, 4@ are structured into the tuple expression @[10.2, 4]@. Finally, the end of the parameter list $P$ has also been reached, so the final expression is @f(5, [10.2, 4])@.
468
469\subsection{Member Access}
470
471At times, it is desirable to access a single component of a tuple-valued expression without creating unnecessary temporary variables to assign to. Given a tuple-valued expression @e@ and a compile-time constant integer $i$ where $0 \leq i < n$, where $n$ is the number of components in @e@, @e.i@ accesses the $i$\textsuperscript{th} component of @e@. For example,
472\begin{lstlisting}
473[int, double] x;
474[char *, int] f();
475void g(double, int);
476[int, double] * p;
477
478int y = x.0;  // access int component of x
479y = f().1;  // access int component of f
480p->0 = 5;  // access int component of tuple pointed-to by p
481g(x.1, x.0);  // rearrange x to pass to g
482double z = [x, f()].0.1;  // access second component of first component of tuple expression
483\end{lstlisting}
484As seen above, tuple-index expressions can occur on any tuple-typed expression, including tuple-returning functions, square-bracketed tuple expressions, and other tuple-index expressions, provided the retrieved component is also a tuple. This feature was proposed for {K-W C}, a precursor of \CFA{}, but never implemented \citep[p.~45]{Till89}.
485
486It is possible to access multiple fields from a single expression using a \emph{member-access tuple expression}. The result is a single tuple expression whose type is the tuple of the types of the members. For example,
487\begin{lstlisting}
488struct S { int x; double y; char * z; } s;
489s.[x, y, z];
490\end{lstlisting}
491Here, the type of @s.[x, y, z]@ is @[int, double, char *]@. A member tuple expression has the form @a.[x, y, z];@ where @a@ is an expression with type @T@, where @T@ supports member access expressions, and @x, y, z@ are all members of @T@ with types @T$_x$@, @T$_y$@, and @T$_z$@ respectively. Then the type of @a.[x, y, z]@ is @[T_x, T_y, T_z]@.
492
493Since tuple index expressions are a form of member-access expression, it is possible to use tuple-index expressions in conjunction with member tuple expressions to manually restructure a tuple (e.g. rearrange components, drop components, duplicate components, etc.):
494\begin{lstlisting}
495[int, int, long, double] x;
496void f(double, long);
497
498f(x.[0, 3]);          // f(x.0, x.3)
499x.[0, 1] = x.[1, 0];  // [x.0, x.1] = [x.1, x.0]
500[long, int, long] y = x.[2, 0, 2];
501\end{lstlisting}
502
503It is possible for a member tuple expression to contain other member access expressions:
504\begin{lstlisting}
505struct A { double i; int j; };
506struct B { int * k; short l; };
507struct C { int x; A y; B z; } v;
508v.[x, y.[i, j], z.k];
509\end{lstlisting}
510This expression is equivalent to @[v.x, [v.y.i, v.y.j], v.z.k]@. That is, the aggregate expression is effectively distributed across the tuple, which allows simple and easy access to multiple components in an aggregate, without repetition. It is guaranteed that the aggregate expression to the left of the @.@ in a member tuple expression is evaluated exactly once. As such, it is safe to use member tuple expressions on the result of a side-effecting function.
511
512\subsection{Tuple Assignment}
513
514In addition to tuple-index expressions, individual components of tuples can be accessed by a \emph{destructuring assignment} which has a tuple expression with lvalue components on its left-hand side. More generally, an assignment where the left-hand side of the assignment operator has a tuple type is called \emph{tuple assignment}. There are two kinds of tuple assignment depending on whether the right-hand side of the assignment operator has a tuple type or a non-tuple type, called \emph{multiple assignment} and \emph{mass assignment}, respectively.
515\begin{lstlisting}
516int x;
517double y;
518[int, double] z;
519[y, x] = 3.14;  // mass assignment
520[x, y] = z;     // multiple assignment
521z = 10;         // mass assignment
522z = [x, y];     // multiple assignment
523\end{lstlisting}
524Let $L_i$ for $i$ in $[0, n)$ represent each component of the flattened left side, $R_i$ represent each component of the flattened right side of a multiple assignment, and $R$ represent the right side of a mass assignment.
525
526For a multiple assignment to be valid, both tuples must have the same number of elements when flattened. Multiple assignment assigns $R_i$ to $L_i$ for each $i$.
527That is, @?=?(&$L_i$, $R_i$)@ must be a well-typed expression. In the previous example, @[x, y] = z@, @z@ is flattened into @z.0, z.1@, and the assignments @x = z.0@ and @y = z.1@ are executed.
528
529A mass assignment assigns the value $R$ to each $L_i$. For a mass assignment to be valid, @?=?(&$L_i$, $R$)@ must be a well-typed expression. This differs from C cascading assignment (e.g. @a=b=c@) in that conversions are applied to $R$ in each individual assignment, which prevents data loss from the chain of conversions that can happen during a cascading assignment. For example, @[y, x] = 3.14@ performs the assignments @y = 3.14@ and @x = 3.14@, which results in the value @3.14@ in @y@ and the value @3@ in @x@. On the other hand, the C cascading assignment @y = x = 3.14@ performs the assignments @x = 3.14@ and @y = x@, which results in the value @3@ in @x@, and as a result the value @3@ in @y@ as well.
530
531Both kinds of tuple assignment have parallel semantics, such that each value on the left side and right side is evaluated \emph{before} any assignments occur. As a result, it is possible to swap the values in two variables without explicitly creating any temporary variables or calling a function:
532\begin{lstlisting}
533int x = 10, y = 20;
534[x, y] = [y, x];
535\end{lstlisting}
536After executing this code, @x@ has the value @20@ and @y@ has the value @10@.
537
538In \CFA{}, tuple assignment is an expression where the result type is the type of the left-hand side of the assignment, as in normal assignment. That is, a tuple assignment produces the value of the left-hand side after assignment. These semantics allow cascading tuple assignment to work out naturally in any context where a tuple is permitted. These semantics are a change from the original tuple design in {K-W C} \citep{Till89}, wherein tuple assignment was a statement that allows cascading assignments as a special case. This decision wa made in an attempt to fix what was seen as a problem with assignment, wherein it can be used in many different locations, such as in function-call argument position. While permitting assignment as an expression does introduce the potential for subtle complexities, it is impossible to remove assignment expressions from \CFA{} without affecting backwards compatibility with C. Furthermore, there are situations where permitting assignment as an expression improves readability by keeping code succinct and reducing repetition, and complicating the definition of tuple assignment puts a greater cognitive burden on the user. In another language, tuple assignment as a statement could be reasonable, but it would be inconsistent for tuple assignment to be the only kind of assignment in \CFA{} that is not an expression.
539
540\subsection{Casting}
541
542In C, the cast operator is used to explicitly convert between types. In \CFA{}, the cast operator has a secondary use as type ascription. That is, a cast can be used to select the type of an expression when it is ambiguous, as in the call to an overloaded function:
543\begin{lstlisting}
544int f();     // (1)
545double f();  // (2)
546
547f();       // ambiguous - (1),(2) both equally viable
548(int)f();  // choose (2)
549\end{lstlisting}
550
551Since casting is a fundamental operation in \CFA{}, casts should be given a meaningful interpretation in the context of tuples. Taking a look at standard C provides some guidance with respect to the way casts should work with tuples:
552\begin{lstlisting}
553int f();
554void g();
555
556(void)f();  // (1)
557(int)g();  // (2)
558
559struct A { int x; };
560(struct A)f();  // (3)
561\end{lstlisting}
562In C, (1) is a valid cast, which calls @f@ and discards its result. On the other hand, (2) is invalid, because @g@ does not produce a result, so requesting an @int@ to materialize from nothing is nonsensical. Finally, (3) is also invalid, because in C casts only provide conversion between scalar types \cite{C11}. For consistency, this implies that any case wherein the number of components increases as a result of the cast is invalid, while casts which have the same or fewer number of components may be valid.
563
564Formally, a cast to tuple type is valid when $T_n \leq S_m$, where $T_n$ is the number of components in the target type and $S_m$ is the number of components in the source type, and for each $i$ in $[0, n)$, $S_i$ can be cast to $T_i$. Excess elements ($S_j$ for all $j$ in $[n, m)$) are evaluated, but their values are discarded so that they are not included in the result expression. This discarding naturally follows the way that a cast to @void@ works in C.
565
566For example, in
567\begin{lstlisting}
568  [int, int, int] f();
569  [int, [int, int], int] g();
570
571  ([int, double])f();           // (1)
572  ([int, int, int])g();         // (2)
573  ([void, [int, int]])g();      // (3)
574  ([int, int, int, int])g();    // (4)
575  ([int, [int, int, int]])g();  // (5)
576\end{lstlisting}
577
578(1) discards the last element of the return value and converts the second element to @double@. Since @int@ is effectively a 1-element tuple, (2) discards the second component of the second element of the return value of @g@. If @g@ is free of side effects, this is equivalent to @[(int)(g().0), (int)(g().1.0), (int)(g().2)]@.
579Since @void@ is effectively a 0-element tuple, (3) discards the first and third return values, which is effectively equivalent to @[(int)(g().1.0), (int)(g().1.1)]@).
580
581Note that a cast is not a function call in \CFA{}, so flattening and structuring conversions do not occur for cast expressions\footnote{User-defined conversions have been considered, but for compatibility with C and the existing use of casts as type ascription, any future design for such conversions would require more precise matching of types than allowed for function arguments and parameters.}. As such, (4) is invalid because the cast target type contains 4 components, while the source type contains only 3. Similarly, (5) is invalid because the cast @([int, int, int])(g().1)@ is invalid. That is, it is invalid to cast @[int, int]@ to @[int, int, int]@.
582
583\subsection{Polymorphism}
584
585Tuples also integrate with \CFA{} polymorphism as a special sort of generic type. Due to the implicit flattening and structuring conversions involved in argument passing, @otype@ and @dtype@ parameters are restricted to matching only with non-tuple types.
586\begin{lstlisting}
587forall(otype T, dtype U)
588void f(T x, U * y);
589
590f([5, "hello"]);
591\end{lstlisting}
592In this example, @[5, "hello"]@ is flattened, so that the argument list appears as @5, "hello"@. The argument matching algorithm binds @T@ to @int@ and @U@ to @const char@, and calls the function as normal.
593
594Tuples, however, can contain polymorphic components. For example, a plus operator can be written to add two triples of a type together.
595\begin{lstlisting}
596forall(otype T | { T ?+?(T, T); })
597[T, T, T] ?+?([T, T, T] x, [T, T, T] y) {
598  return [x.0+y.0, x.1+y.1, x.2+y.2];
599}
600[int, int, int] x;
601int i1, i2, i3;
602[i1, i2, i3] = x + ([10, 20, 30]);
603\end{lstlisting}
604
605Flattening and restructuring conversions are also applied to tuple types in polymorphic type assertions. Previously in \CFA{}, it has been assumed that assertion arguments must match the parameter type exactly, modulo polymorphic specialization (\ie{}, no implicit conversions are applied to assertion arguments). In the example below:
606\begin{lstlisting}
607int f([int, double], double);
608forall(otype T, otype U | { T f(T, U, U); })
609void g(T, U);
610g(5, 10.21);
611\end{lstlisting}
612If assertion arguments must match exactly, then the call to @g@ cannot be resolved, since the expected type of @f@ is flat, while the only @f@ in scope requires a tuple type. Since tuples are fluid, this requirement reduces the usability of tuples in polymorphic code. To ease this pain point, function parameter and return lists are flattened for the purposes of type unification, which allows the previous example to pass expression resolution.
613
614This relaxation is made possible by extending the existing thunk generation scheme, as described by Bilson \citet{Bilson03}. Now, whenever a candidate's parameter structure does not exactly match the formal parameter's structure, a thunk is generated to specialize calls to the actual function:
615\begin{lstlisting}
616int _thunk(int _p0, double _p1, double _p2) {
617  return f([_p0, _p1], _p2);
618}
619\end{lstlisting}
620Essentially, this provides flattening and structuring conversions to inferred functions, improving the compatibility of tuples and polymorphism.
621
622\subsection{Variadic Tuples}
623
624To define variadic functions, \CFA{} adds a new kind of type parameter, @ttype@. Matching against a @ttype@ parameter consumes all remaining argument components and packages them into a tuple, binding to the resulting tuple of types. In a given parameter list, there should be at most one @ttype@ parameter that must occur last, otherwise the call can never resolve, given the previous rule. This idea essentially matches normal variadic semantics, with a strong feeling of similarity to \CCeleven{} variadic templates. As such, @ttype@ variables will also be referred to as \emph{argument packs}.
625
626Like variadic templates, the main way to manipulate @ttype@ polymorphic functions is through recursion. Since nothing is known about a parameter pack by default, assertion parameters are key to doing anything meaningful. Unlike variadic templates, @ttype@ polymorphic functions can be separately compiled.
627
628For example, the C @sum@ function at the beginning of this section could be written using @ttype@ as:
629\begin{lstlisting}
630int sum(){ return 0; }        // (0)
631forall(ttype Params | { int sum(Params); })
632int sum(int x, Params rest) { // (1)
633  return x+sum(rest);
634}
635sum(10, 20, 30);
636\end{lstlisting}
637Since (0) does not accept any arguments, it is not a valid candidate function for the call @sum(10, 20, 30)@.
638In order to call (1), @10@ is matched with @x@, and the argument resolution moves on to the argument pack @rest@, which consumes the remainder of the argument list and @Params@ is bound to @[20, 30]@.
639In order to finish the resolution of @sum@, an assertion parameter which matches @int sum(int, int)@ is required.
640Like in the previous iteration, (0) is not a valid candiate, so (1) is examined with @Params@ bound to @[int]@, requiring the assertion @int sum(int)@.
641Next, (0) fails, and to satisfy (1) @Params@ is bound to @[]@, requiring an assertion @int sum()@.
642Finally, (0) matches and (1) fails, which terminates the recursion.
643Effectively, this traces as @sum(10, 20, 30)@ $\rightarrow$ @10+sum(20, 30)@ $\rightarrow$ @10+(20+sum(30))@ $\rightarrow$ @10+(20+(30+sum()))@ $\rightarrow$ @10+(20+(30+0))@.
644
645A point of note is that this version does not require any form of argument descriptor, since the \CFA{} type system keeps track of all of these details. It might be reasonable to take the @sum@ function a step further to enforce a minimum number of arguments, which could be done simply:
646\begin{lstlisting}
647int sum(int x, int y){
648  return x+y;
649}
650forall(ttype Params | { int sum(int, Params); })
651int sum(int x, int y, Params rest) {
652  return sum(x+y, rest);
653}
654sum(10, 20, 30);
655\end{lstlisting}
656
657One more iteration permits the summation of any summable type, as long as all arguments are the same type:
658\begin{lstlisting}
659trait summable(otype T) {
660  T ?+?(T, T);
661};
662forall(otype R | summable(R))
663R sum(R x, R y){
664  return x+y;
665}
666forall(otype R, ttype Params
667  | summable(R)
668  | { R sum(R, Params); })
669R sum(R x, R y, Params rest) {
670  return sum(x+y, rest);
671}
672sum(3, 10, 20, 30);
673\end{lstlisting}
674Unlike C, it is not necessary to hard code the expected type. This is naturally open to extension, in that any user-defined type with a @?+?@ operator is automatically able to be used with the @sum@ function. That is to say, the programmer who writes @sum@ does not need full program knowledge of every possible data type, unlike what is necessary to write an equivalent function using the standard C mechanisms. Summing arbitrary heterogeneous lists is possible with similar code by adding the appropriate type variables and addition operators.
675
676It is possible to write a type-safe variadic print routine, which can replace @printf@
677\begin{lstlisting}
678struct S { int x, y; };
679forall(otype T, ttype Params |
680  { void print(T); void print(Params); })
681void print(T arg, Params rest) {
682  print(arg);
683  print(rest);
684}
685void print(char * x) { printf("%s", x); }
686void print(int x) { printf("%d", x);  }
687void print(S s) { print("{ ", s.x, ",", s.y, " }"); }
688print("s = ", (S){ 1, 2 }, "\n");
689\end{lstlisting}
690This example routine showcases a variadic-template-like decomposition of the provided argument list. The individual @print@ routines allow printing a single element of a type. The polymorphic @print@ allows printing any list of types, as long as each individual type has a @print@ function. The individual print functions can be used to build up more complicated @print@ routines, such as for @S@, which is something that cannot be done with @printf@ in C.
691
692It is also possible to use @ttype@ polymorphism to provide arbitrary argument forwarding functions. For example, it is possible to write @new@ as a library function:
693\begin{lstlisting}
694struct Pair(otype R, otype S);
695forall(otype R, otype S)
696void ?{}(Pair(R, S) *, R, S);  // (1)
697
698forall(dtype T, ttype Params | sized(T) | { void ?{}(T *, Params); })
699T * new(Params p) {
700  return ((T*)malloc( sizeof(T) )){ p }; // construct into result of malloc
701}
702Pair(int, char) * x = new(42, '!');
703\end{lstlisting}
704The @new@ function provides the combination of type-safe @malloc@ with a constructor call, so that it becomes impossible to forget to construct dynamically allocated objects. This provides the type-safety of @new@ in \CC{}, without the need to specify the allocated type, thanks to return-type inference.
705
706In the call to @new@, @Pair(double, char)@ is selected to match @T@, and @Params@ is expanded to match @[double, char]@. The constructor (1) may be specialized to  satisfy the assertion for a constructor with an interface compatible with @void ?{}(Pair(int, char) *, int, char)@.
707
708\TODO{} Check if we actually can use ttype parameters on generic types (if they set the complete flag, it should work, or nearly so).
709
710\subsection{Implementation}
711
712Tuples are implemented in the \CFA{} translator via a transformation into generic types. For each $N$, the first time an $N$-tuple is seen in a scope a generic type with $N$ type parameters is generated. For example:
713\begin{lstlisting}
714[int, int] f() {
715  [double, double] x;
716  [int, double, int] y;
717}
718\end{lstlisting}
719Is transformed into:
720\begin{lstlisting}
721forall(dtype T0, dtype T1 | sized(T0) | sized(T1))
722struct _tuple2 {  // generated before the first 2-tuple
723  T0 field_0;
724  T1 field_1;
725};
726_tuple2_(int, int) f() {
727  _tuple2_(double, double) x;
728  forall(dtype T0, dtype T1, dtype T2 | sized(T0) | sized(T1) | sized(T2))
729  struct _tuple3 {  // generated before the first 3-tuple
730    T0 field_0;
731    T1 field_1;
732    T2 field_2;
733  };
734  _tuple3_(int, double, int) y;
735}
736\end{lstlisting}
737
738Tuple expressions are then simply converted directly into compound literals:
739\begin{lstlisting}
740[5, 'x', 1.24];
741\end{lstlisting}
742Becomes:
743\begin{lstlisting}
744(_tuple3_(int, char, double)){ 5, 'x', 1.24 };
745\end{lstlisting}
746
747Since tuples are essentially structures, tuple indexing expressions are just field accesses:
748\begin{lstlisting}
749void f(int, [double, char]);
750[int, double] x;
751
752x.0+x.1;
753printf("%d %g\n", x);
754f(x, 'z');
755\end{lstlisting}
756Is transformed into:
757\begin{lstlisting}
758void f(int, _tuple2_(double, char));
759_tuple2_(int, double) x;
760
761x.field_0+x.field_1;
762printf("%d %g\n", x.field_0, x.field_1);
763f(x.field_0, (_tuple2){ x.field_1, 'z' });
764\end{lstlisting}
765Note that due to flattening, @x@ used in the argument position is converted into the list of its fields. In the call to @f@, a the second and third argument components are structured into a tuple argument. Similarly, tuple member expressions are recursively expanded into a list of member access expressions.
766
767Expressions which may contain side effects are made into \emph{unique expressions} before being expanded by the flattening conversion. Each unique expression is assigned an identifier and is guaranteed to be executed exactly once:
768\begin{lstlisting}
769void g(int, double);
770[int, double] h();
771g(h());
772\end{lstlisting}
773Interally, this is converted to two variables and an expression:
774\begin{lstlisting}
775void g(int, double);
776[int, double] h();
777
778_Bool _unq0_finished_ = 0;
779[int, double] _unq0;
780g(
781  (_unq0_finished_ ? _unq0 : (_unq0 = f(), _unq0_finished_ = 1, _unq0)).0,
782  (_unq0_finished_ ? _unq0 : (_unq0 = f(), _unq0_finished_ = 1, _unq0)).1,
783);
784\end{lstlisting}
785Since argument evaluation order is not specified by the C programming language, this scheme is built to work regardless of evaluation order. The first time a unique expression is executed, the actual expression is evaluated and the accompanying boolean is true to true. Every subsequent evaluation of the unique expression then results in an access to the stored result of the actual expression. Tuple member expressions also take advantage of unique expressions in the case of possible impurity.
786
787Currently, the \CFA{} translator has a very broad, imprecise definition of impurity, where any function call is assumed to be impure. This notion could be made more precise for certain intrinsic, autogenerated, and builtin functions, and could analyze function bodies when they are available to recursively detect impurity, to eliminate some unique expressions.
788
789The various kinds of tuple assignment, constructors, and destructors generate GNU C statement expressions. A variable is generated to store the value produced by a statement expression, since its fields may need to be constructed with a non-trivial constructor and it may need to be referred to multiple time, \eg{} in a unique expression. The use of statement expressions allows the translator to arbitrarily generate additional temporary variables as needed, but binds the implementation to a non-standard extension of the C language. However, there are other places where the \CFA{} translator makes use of GNU C extensions, such as its use of nested functions, so this is not a new restriction.
790
791Type assertions in \CFA{} generally require exact matching of parameter and return types, with no implicit conversions allowed. Tuple flattening and restructuring is an exception to this, however, allowing functions to match assertions without regard to the presence of tuples; this is particularly useful for structuring trailing arguments to match a @ttype@ parameter or flattening assertions based on @ttype@ type variables to match programmer-defined functions. This relaxation is made possible by extending the existing thunk generation scheme, as described by Bilson \citet{Bilson03}. Whenever a candidate's parameter structure does not exactly match the formal parameter's structure, a thunk is generated to specialize calls to the actual function, as in this conversion from a function @f@ with signature @int (*)(int, char, char)@ to another with signature @int (*)([int, char], char)@:
792\begin{lstlisting}
793int _thunk(int _p0, char _p1, char _p2) {
794  return f([_p0, _p1], _p2);
795}
796\end{lstlisting}
797These thunks take advantage of GCC C nested functions to produce closures that have the usual function pointer signature.
798
799\section{Related Work}
800
801\CC{} is the existing language it is most natural to compare \CFA{} to, as they are both more modern extensions to C with backwards source compatibility. The most fundamental difference in approach between \CC{} and \CFA{} is their approach to this C compatibility. \CC{} does provide fairly strong source backwards compatibility with C, but is a dramatically more complex language than C, and imposes a steep learning curve to use many of its extension features. For instance, in a break from general C practice, template code is typically written in header files, with a variety of subtle restrictions implied on its use by this choice, while the other polymorphism mechanism made available by \CC{}, class inheritance, requires programmers to learn an entirely new object-oriented programming paradigm; the interaction between templates and inheritance is also quite complex. \CFA{}, by contrast, has a single facility for polymorphic code, one which supports separate compilation and the existing procedural paradigm of C code. A major difference between the approaches of \CC{} and \CFA{} to polymorphism is that the set of assumed properties for a type is \emph{explicit} in \CFA{}. One of the major limiting factors of \CC{}'s approach is that templates cannot be separately compiled, and, until concepts \citep{C++Concepts} are standardized (currently anticipated for \CCtwenty{}), \CC{} provides no way to specify the requirements of a generic function in code beyond compilation errors for template expansion failures. By contrast, the explicit nature of assertions in \CFA{} allows polymorphic functions to be separately compiled, and for their requirements to be checked by the compiler; similarly, \CFA{} generic types may be opaque, unlike \CC{} template classes.
802
803Cyclone also provides capabilities for polymorphic functions and existential types \citep{Gro06}, similar in concept to \CFA{}'s @forall@ functions and generic types. Cyclone existential types can include function pointers in a construct similar to a virtual function table, but these pointers must be explicitly initialized at some point in the code, a tedious and potentially error-prone process. Furthermore, Cyclone's polymorphic functions and types are restricted in that they may only abstract over types with the same layout and calling convention as @void*@, in practice only pointer types and @int@ - in \CFA{} terms, all Cyclone polymorphism must be dtype-static. This provides the efficiency benefits discussed in Section~\ref{sec:generic-apps} for dtype-static polymorphism, but is more restrictive than \CFA{}'s more general model.
804
805Go and Rust are both modern, compiled languages with abstraction features similar to \CFA{} traits, \emph{interfaces} in Go and \emph{traits} in Rust. However, both languages represent dramatic departures from C in terms of language model, and neither has the same level of compatibility with C as \CFA{}. Go is a garbage-collected language, imposing the associated runtime overhead, and complicating foreign-function calls with the neccessity of accounting for data transfer between the managed Go runtime and the unmanaged C runtime. Furthermore, while generic types and functions are available in Go, they are limited to a small fixed set provided by the compiler, with no language facility to define more. Rust is not garbage-collected, and thus has a lighter-weight runtime that is more easily interoperable with C. It also possesses much more powerful abstraction capabilities for writing generic code than Go. On the other hand, Rust's borrow-checker, while it does provide strong safety guarantees, is complex and difficult to learn, and imposes a distinctly idiomatic programming style on Rust. \CFA{}, with its more modest safety features, is significantly easier to port C code to, while maintaining the idiomatic style of the original source.
806
807\section{Conclusion \& Future Work}
808
809In conclusion, the authors' design for generic types and tuples imposes minimal runtime overhead while still supporting a full range of C features, including separately-compiled modules. There is ongoing work on a wide range of \CFA{} feature extensions, including reference types, exceptions, and concurent programming primitives. In addition to this work, there are some interesting future directions the polymorphism design could take. Notably, \CC{} template functions trade compile time and code bloat for optimal runtime of individual instantiations of polymorphic functions. \CFA{} polymorphic functions, by contrast, use an approach which is essentially dynamic virtual dispatch. The runtime overhead of this approach is low, but not as low as \CC{} template functions, and it may be beneficial to provide a mechanism for particularly performance-sensitive code to close this gap. Further research is needed, but two promising approaches are to allow an annotation on polymorphic function call sites that tells the translator to create a template-specialization of the function (provided the code is visible in the current translation unit) or placing an annotation on polymorphic function definitions that instantiates a version of the polymorphic function specialized to some set of types. These approaches are not mutually exclusive, and would allow these performance optimizations to be applied only where most useful to increase performance, without suffering the code bloat or loss of generality of a template expansion approach where it is unneccessary.
810
811\bibliographystyle{ACM-Reference-Format}
812\bibliography{generic_types}
813
814\end{document}
Note: See TracBrowser for help on using the repository browser.