source: doc/aaron_comp_II/comp_II.tex @ 481ad06

Last change on this file since 481ad06 was 481ad06, checked in by Aaron Moss <a3moss@…>, 8 years ago

Added completion timeline to comp II draft

  • Property mode set to 100644
File size: 19.9 KB
1% inline code ©...© (copyright symbol) emacs: C-q M-)
2% red highlighting ®...® (registered trademark symbol) emacs: C-q M-.
3% blue highlighting ß...ß (sharp s symbol) emacs: C-q M-_
4% green highlighting ¢...¢ (cent symbol) emacs: C-q M-"
5% LaTex escape §...§ (section symbol) emacs: C-q M-'
6% keyword escape ¶...¶ (pilcrow symbol) emacs: C-q M-^
7% math escape $...$ (dollar symbol)
13% Latex packages used in the document (copied from CFA user manual).
14\usepackage[T1]{fontenc}                                % allow Latin1 (extended ASCII) characters
19\usepackage{upquote}                                                                    % switch curled `'" to straight
23\usepackage{varioref}                                                                   % extended references
24\usepackage{listings}                                                                   % format program code
25\usepackage[flushmargin]{footmisc}                                              % support label/reference in footnote
26\usepackage{latexsym}                                   % \Box glyph
27\usepackage{mathptmx}                                   % better math font with "times"
31\input{common}                                          % bespoke macros used in the document
36\setlength{\topmargin}{-0.45in}                                                 % move running title into header
47Efficient Type Resolution in \CFA \\
50PhD Comprehensive II Research Proposal
56Aaron Moss \\
57\Large Cheriton School of Computer Science \\
58\Large University of Waterloo
69% changed after setting pagestyle
70\renewcommand{\sectionmark}[1]{\markboth{\thesection\quad #1}{\thesection\quad #1}}
71\renewcommand{\subsectionmark}[1]{\markboth{\thesubsection\quad #1}{\thesubsection\quad #1}}
73\linenumbers                                            % comment out to turn off line numbering
89\CFA\footnote{Pronounced ``C-for-all'', and written \CFA, CFA, or \CFL.} is an evolutionary modernization of the C programming language currently being designed and built at the University of Waterloo by a team led by Peter Buhr.
90Features added to C by \CFA include name overloading, user-defined operators, parametric-polymorphic routines, and type constructors and destructors, among others.
91These features make \CFA significantly more powerful and expressive than C, but impose a significant compile-time cost to implement, particularly in the expression resolver, which must evaluate the typing rules of a much more complex type system.
92The primary goal of this proposed research project is to develop a sufficiently performant expression resolution algorithm, experimentally validate its performance, and integrate it into \Index*{CFA-CC}, the \CFA reference compiler.
93Secondary goals of this project include the development of various new language features for \CFA; parametric-polymorphic (``generic'') types have already been designed and implemented, and reference types and user-defined conversions are under design consideration.
94The experimental performance-testing architecture for resolution algorithms will also be used to determine the compile-time cost of adding such new features to the \CFA type system.
98To make the scope of the proposed expression resolution problem more explicit, it is necessary to define the features of both C and \CFA (both current and proposed) which affect this algorithm.
99In some cases the interactions of multiple features make expression resolution a significantly more complex problem than any individual feature would; in others a feature which does not by itself add any complexity to expression resolution will trigger previously rare edge cases much more frequently.
101\subsection{Polymorphic Functions}
102The most significant feature \CFA adds is parametric-polymorphic functions.
103Such functions are written using a ©forall© clause, the feature that gave the language its name:
105forall(otype T)
106T identity(T x) {
107    return x;
110int forty_two = identity(42); // T is bound to int, forty_two == 42
112The ©identity© function above can be applied to any complete object type (or ``©otype©'').
113The type variable ©T© is transformed into a set of additional implicit parameters to ©identity© which encode sufficient information about ©T© to create and return a variable of that type.
114The current \CFA implementation passes the size and alignment of the type represented by an ©otype© parameter, as well as an assignment operator, constructor, copy constructor \& destructor.
116Since bare polymorphic types do not provide a great range of available operations, \CFA also provides a \emph{type assertion} mechanism to provide further information about a type:
118forall(otype T | { T twice(T); })
119T four_times(T x) {
120    return twice( twice(x) );
123double twice(double d) { return d * 2.0; } // (1)
125double magic = four_times(10.5); // T is bound to double, uses (1) to satisfy type assertion
127These type assertions may be either variable or function declarations which depend on a polymorphic type variable.
128©four_times© can only be called with an argument for which there exists a function named ©twice© that can take that argument and return another value of the same type; a pointer to the appropriate ©twice© function will be passed as an additional implicit parameter to the call to ©four_times©.
130Monomorphic specializations of polymorphic functions can themselves be used to satisfy type assertions.
131For instance, ©twice© could have been define as below, using the \CFA syntax for operator overloading:
133forall(otype S | { S ?+?(S, S); })
134S twice(S x) { return x + x; }  // (2)
136This version of ©twice© will work for any type ©S© that has an addition operator defined for it, and it could have been used to satisfy the type assertion on ©four_times©.
137The compiler accomplishes this by creating a wrapper function calling ©twice // (2)© with ©S© bound to ©double©, then providing this wrapper function to ©four_times©\footnote{©twice // (2)© could have had a type parameter named ©T©; \CFA specifies a renaming the type parameters, which would avoid the name conflict with the parameter ©T© of ©four_times©.}.
139Finding appropriate functions to satisfy type assertions is essentially a recursive case of expression resolution, as it takes a name (that of the type assertion) and attempts to match it to a suitable declaration in the current scope.
140If a polymorphic function can be used to satisfy one of its own type assertions, this recursion may not terminate, as it is possible that function will be examined as a candidate for its own type assertion unboundedly repeatedly.
141To avoid infinite loops, the current \Index*{CFA-CC} compiler imposes a fixed limit on the possible depth of recursion, similar to that employed by most \Index*[C++]{\CC} compilers for template expansion; this restriction means that there are some semantically well-typed expressions which cannot be resolved by {CFA-CC}.
142One area of potential improvement this project proposes to investigate is the possibility of using the compiler's knowledge of the current set of declarations to make a more precise judgement of when further type assertion satisfaction recursion will not produce a well-typed expression.
144\subsection{Name Overloading}
145In C, no more than one function or variable in the same scope may share the same name, and function or variable declarations in inner scopes with the same name as a declaration in an outer scope hide the outer declaration. 
146This makes finding the proper declaration to match to a function application or variable expression a simple matter of symbol table lookup, which can be easily and efficiently implemented.
147\CFA, on the other hand, allows overloading of variable and function names, so long as the overloaded declarations do not have the same type, avoiding the multiplication of function names for different types common in the C standard library, as in the following example:
149int three = 3;
150double three = 3.0;
152int thrice(int i) { return i * three; } // uses int three
153double thrice(double d) { return d * three; } // uses double three
155// thrice(three); // ERROR: ambiguous
156int nine = thrice(three);    // uses int thrice and three, based on return type
157double nine = thrice(three); // uses double thrice and three, based on return type
160The presence of name overloading in \CFA means that simple table lookup is not sufficient to match identifiers to declarations, and a type matching algorithm must be part of expression resolution.
162\subsection{Implicit Conversions}
163In addition to the multiple interpretations of an expression produced by name overloading, \CFA also supports all of the implicit conversions present in C, producing further candidate interpretations for expressions.
164C does not have a traditionally-defined inheritance hierarchy of types, but the C standard's rules for the ``usual arithmetic conversions'' define which of the built-in types are implicitly convertable to which other types, and the relative cost of any pair of such conversions from a single source type.
165\CFA adds to the usual arithmetic conversions rules for determining the cost of binding a polymorphic type variable in a function call; such bindings are cheaper than any \emph{unsafe} (narrowing) conversion, \eg ©int© to ©char©, but more expensive than any \emph{safe} (widening) conversion, \eg ©int© to ©double©.
166The expression resolution problem, then, is to find the unique minimal-cost interpretation of each expression in the program, where all identifiers must be matched to a declaration, implicit conversions or polymorphic bindings of the result of an expression may increase the cost of the expression, and which subexpression interpretation is minimal-cost may be disambiguated by context.
168\subsubsection{User-generated Implicit Conversions}
169One possible additional feature to \CFA included in this research proposal is \emph{user-generated implicit conversions}.
170Such a conversion system should be simple for user programmers to utilize, and fit naturally with the existing design of implicit conversions in C; ideally it would also be sufficiently powerful to encode C's usual arithmetic conversions itself, so that \CFA only has one set of rules for conversions.
172Glen Ditchfield \textbf{TODO CITE} has laid out a framework for using polymorphic conversion constructor functions to create a directed acyclic graph (DAG) of conversions.
173A monomorphic variant of these functions can be used to mark a conversion arc in the DAG as only usable as the final step in a conversion.
174With these two types of conversion arcs, separate DAGs can be created for the safe and the unsafe conversions, and conversion cost can be represented as path length through the DAG.
175Open research questions on this topic include whether a conversion graph can be generated that represents each allowable conversion in C with a unique minimal-length path, such that the path lengths accurately represent the relative costs of the conversions, whether such a graph representation can be usefully augmented to include user-defined types as well as built-in types, and whether the graph can be efficiently represented and included in the expression resolver.
177\subsection{Constructors \& Destructors}
178Rob Shluntz, a current member of the \CFA research team, has added constructors and destructors to \CFA.
179Each type has an overridable default-generated zero-argument constructor, copy constructor, assignment operator, and destructor; for struct types these functions each call their equivalents on each field of the struct.
180This affects expression resolution because an ©otype© type variable ©T© implicitly adds four type assertions, one for each of these four functions, so assertion resolution is pervasive in \CFA polymorphic functions, even those without any explicit type assertions.
182\subsection{Generic Types}
183The author has added a generic type capability to \CFA, designed to efficiently and naturally integrate with \CFA's existing polymorphic functions.
184A generic type can be declared by placing a ©forall© specifier on a struct or union declaration, and instantiated using a parenthesized list of types after the type name:
186forall(otype R, otype S) struct pair {
187    R first;
188    S second;
191forall(otype T)
192T value( pair(const char*, T) *p ) { return p->second; }
194pair(const char*, int) p = { "magic", 42 };
195int magic = value( &p );
197For \emph{concrete} generic types, that is, those where none of the type parameters depend on polymorphic type variables (like ©pair(const char*, int)© above), the struct is essentially template expanded to a new struct type; for \emph{polymorphic} generic types (such as ©pair(const char*, T)© above), member access is handled by a runtime calculation of the field offset, based on the size and alignment information of the polymorphic parameter type.
198The default-generated constructors, destructor \& assignment operator for a generic type are polymorphic functions with the same list of type parameters as the generic type definition.
200Aside from giving users the ability to create more parameterized types than just the built-in pointer, array \& function types, the combination of generic types with polymorphic functions and implicit conversions makes the edge case where a polymorphic function can match its own assertions much more common, as follows:
202\item A polymorphic implicit conversion (such as the built-in conversion from ©void*© to any other pointer type) applied to an expression can produce an expression of any type.
203\item If we attempt to use a generic type with ©otype© parameters (such as ©box© above) for this type, the ©otype© parameters on the constructors, \etc will also need to be resolved, and will have no constraints on what they may be.
204\item Attempting to match some yet-to-be-determined specialization of the generic type to this ©otype© parameter will create a recursive case of the default constructor, \etc matching their own type assertions, creating an unboundedly deep nesting of the generic type inside itself.
206As discussed above, any \CFA expression resolver must handle this possible infinite recursion somehow, but the combination of generic types with other language features makes this particular edge case occur somewhat frequently in user code.
208\subsection{Tuple Types}
209\CFA adds \emph{tuple types} to C, a facility for referring to multiple values with one name.
210A variable may name a tuple, and a function may return one.
211Particularly relevantly for resolution, a tuple may be automatically \emph{destructured} into a list of values, as in the ©swap© function below:
213[char, char] x = [ '!', '?' ];
214int x = 42;
216forall(otype T) [T, T] swap( T a, T b ) { return [b, a]; }
218x = swap( x ); // destructure [char, char] x into two elements of parameter list
219// ^ can't use int x, not enough arguments to swap
221Tuple destructuring means that the mapping from the position of a subexpression in the argument list to the position of a paramter in the function declaration is not straightforward, as some arguments may be expandable to different numbers of parameters, like ©x© above.
223\subsection{Reference Types}
224The author, in collaboration with the rest of the \CFA research team, has been designing a \emph{reference type} for \CFA.
225Given some type ©T©, a ©T&© (``reference to ©T©'') is essentially an automatically dereferenced pointer; with these semantics most of the C standard's discussions of lvalues can be expressed in terms of references instead, with the benefit of being able to express the difference between the reference and non-reference version of a type in user code.
226References preserve C's existing qualifier-dropping lvalue-to-rvalue conversion (\ie a ©const volatile int&© can be implicitly converted to a bare ©int©); the reference proposal also adds a rvalue-to-lvalue conversion to \CFA, implemented by storing the value in a new compiler-generated temporary and passing a reference to the temporary.
227These two conversions can chain, producing a qualifier-dropping conversion for references, for instance converting a reference to a ©const int© into a reference to a non-©const int© by copying the originally refered to value into a fresh temporary and taking a reference to this temporary.
228These reference conversions may also chain with the other implicit type conversions.
229The main implication of this for expression resolution is the multiplication of available implicit conversions, though in a restricted context that may be able to be treated efficiently as a special case.
231\subsection{Literal Types}
232Another proposal currently under consideration for the \CFA type system is assigning special types to the literal values ©0© and ©1©, say ©zero_t© and ©one_t©.
233Implicit conversions from these types would allow ©0© and ©1© to be considered as values of many different types, depending on context, allowing expression desugarings like ©if ( x ) {}© $\Rightarrow$ ©if ( x != 0 ) {}© to be implemented efficiently and precicely.
234This is a generalization of C's existing behaviour of treating ©0© as either an integer zero or a null pointer constant, and treating either of those values as boolean false.
235The main implication for expression resolution is that the frequently encountered expressions ©0© and ©1© may have a significant number of valid interpretations.
237\subsection{Deleted Function Declarations}
238One final proposal for \CFA with an impact on the expression resolver is \emph{deleted function declarations}; in \CC11, a function declaration can be deleted as below:
240int somefn(char) = delete;
242To add a similar feature to \CFA would involve including the deleted function declarations in expression resolution along with the normal declarations, but producing a compiler error if the deleted function was the best resolution.
243How conflicts should be handled between resolution of an expression to both a deleted and a non-deleted function is a small but open research question.
245\section{Expression Resolution}
246% TODO cite Baker, Cormack, etc.
248\section{Completion Timeline}
249The following is a preliminary estimate of the time necessary to complete the major components of this research project:
251\begin{tabular}{ | r @{--} l | p{4in} | }
252\hline       May 2015 & April 2016   & Project familiarization and generic types design \& implementation. \\
253\hline       May 2016 & April 2017   & Design \& implement prototype resolver and run performance experiments. \\
254\hline       May 2017 & August 2017  & Integrate new language features and best-performing resolver prototype into {CFA-CC}. \\
255\hline September 2017 & January 2018 & Thesis writing \& defense. \\
268\addcontentsline{toc}{section}{\indexname} % add index name to table of contents
270Italic page numbers give the location of the main entry for the referenced term.
271Plain page numbers denote uses of the indexed term.
272Entries for grammar non-terminals are italicized.
273A typewriter font is used for grammar terminals and program identifiers.
Note: See TracBrowser for help on using the repository browser.