public class JavaThread { // Simplistic low-quality Marsaglia Shift-XOR pseudo-random number generator. // Bijective // Cycle length for non-zero values is 4G-1. // 0 is absorbing and should be avoided -- fixed point. // The returned value is typically masked to produce a positive value. static volatile int Ticket = 0 ; private static int nextRandom (int x) { if (x == 0) { // reseed the PRNG // Ticket is accessed infrequently and does not constitute a coherence hot-spot. // Note that we use a non-atomic racy increment -- the race is rare and benign. // If the race is a concern switch to an AtomicInteger. // In addition accesses to the RW volatile global "Ticket" variable are not // (readily) predictable at compile-time so the JIT will not be able to elide // nextRandom() invocations. x = ++Ticket ; if (x == 0) x = 1 ; } x ^= x << 6; x ^= x >>> 21; x ^= x << 7; return x ; } static int x = 2; static private int times = Integer.parseInt("100000000"); public synchronized void noop() { x = nextRandom( x ); } public static void helper() throws InterruptedException { JavaThread j = new JavaThread(); // Inhibit biased locking ... x = (j.hashCode() ^ System.identityHashCode(j)) | 1 ; for(int i = 1; i <= times; i += 1) { x = nextRandom(x); j.noop(); } } public static void InnerMain() throws InterruptedException { long start = System.nanoTime(); helper(); long end = System.nanoTime(); System.out.println( (end - start) / times ); } public static void main(String[] args) throws InterruptedException { if ( args.length > 2 ) System.exit( 1 ); if ( args.length == 2 ) { times = Integer.parseInt(args[1]); } for (int n = Integer.parseInt("5"); --n >= 0 ; ) { InnerMain(); Thread.sleep(2000); // 2 seconds x = nextRandom(x); } if ( x == 0 ) System.out.println(x); } } // Local Variables: // // tab-width: 4 // // End: //