
cfa cc Developer’s Reference1

Fangren Yu2

January 13, 20213

Contents4

1 Overview 15

2 Compiler Framework 16

2.1 AST Representation . 17

2.1.1 Declaration Nodes . 18

2.1.2 Type Nodes . 29

2.1.3 Statement Nodes . 210

2.1.4 Expression Nodes . 211

2.2 Compilation Passes . 212

2.3 Data Structure Change (new-ast) . 313

2.3.1 Source: AST/Node.hpp . 414

2.3.2 Issue: Undetected Sharing . 515

2.3.3 Source: AST/Chain.hpp . 516

3 Compiler Algorithm Documentation 517

3.1 Symbol Table . 618

3.1.1 Source: AST/SymbolTable.hpp . 619

3.2 Type Environment and Unification . 720

3.2.1 Source: ResolvExpr/Unify.cc . 721

3.3 Expression Resolution . 722

3.4 Conversion and Application Cost . 823

3.5 Assertion Satisfaction . 924

4 Tests 925

4.1 Test Suites . 926

4.2 Performance Reports . 927

A Appendix 1028

A.1 Kinds of Type Parameters . 1029

A.2 GNU C Nested Functions . 1030

A.3 Implementation of Parametric Functions . 1031

References 1132

i

1 Overview1

cfa cc is the reference compiler for the C

A

programming language, which is a non-object-oriented extension2

to C. C

A

attempts to introduce productive modern programming language features to C while maintaining3

as much backward-compatibility as possible, so that most existing C programs can seamlessly work with4

C

A

.5

Since the C

A

project dates back to the early 2000s, and only restarted in the past few years, there is6

a significant amount of legacy code in the current compiler codebase with little documentation. The lack7

of documentation makes it difficult to develop new features from the current implementation and diagnose8

problems.9

Currently, the C

A

team is also facing poor compiler performance. For the development of a new10

programming language, writing standard libraries is an important component. The slow compiler causes11

building of the library files to take tens of minutes, making iterative development and testing almost impos-12

sible. There is an ongoing effort to rewrite the core data-structure of the compiler to overcome the perfor-13

mance issue, but many bugs have appeared during this work, and lack of documentation is hampering14

debugging.15

This developer’s reference manual begins the documentation and should be continuously improved until16

it eventually covers the entire compiler codebase. For now, the focus is mainly on the parts being rewritten,17

and also the primary performance bottleneck, namely the resolution algorithm. Its aimed is to provide new18

project developers with guidance in understanding the codebase, and clarify the purpose and behaviour of19

certain functions that are not mentioned in the previous C

A

research papers [1, 2, 3].20

2 Compiler Framework21

C
A

source code is first transformed into an abstract syntax tree (AST) by the parser before analyzed by the22

compiler.23

2.1 AST Representation24

There are 4 major categories of AST nodes used by the compiler, along with some derived structures.25

2.1.1 Declaration Nodes26

A declaration node represents either of:27

• type declaration: struct, union, typedef or type parameter (see Appendix A.1, p. 10)28

• variable declaration29

• function declaration30

Declarations are introduced by standard C declarations, with the usual scoping rules. In addition, declara-31

tions can also be qualified by the forall clause (which is the origin of C

A

’s name):32

forall (<TypeParameterList> | <AssertionList>)33

declaration34

Type parameters in C

A

are similar to C++ template type parameters. The C

A

declaration35

forall (dtype T) ...36

behaves similarly to the C++ template declaration37

template <typename T> ...38

1

2 2.2 Compilation Passes

Assertions are a distinctive feature of C

A

, similar to interfaces in D and Go, and traits in Rust. Contrary1

to the C++ template where arbitrary functions and operators can be used in a template definition, in a C

A

para-2

metric function, operations on parameterized types must be declared in assertions. Consider the following3

C++ template:4

template forall<typename T> T foo(T t) {5

return t + t * t;6

}7

where there are no explicit requirements on the type T. Therefore, the C++ compiler must deduce what8

operators are required during textual (macro) expansion of the template at each usage. As a result, templates9

cannot be compiled. C

A

assertions specify restrictions on type parameters:10

forall(dtype T | { T ?+?(T, T); T ?*?(T, T) }) int foo (T t) {11

return t + t * t;12

}13

Assertions are written using the usual C

A

function declaration syntax. Only types with operators “+” and14

“*” work with this function, and the function prototype is sufficient to allow separate compilation.15

Type parameters and assertions are used in the following compiler data-structures.16

2.1.2 Type Nodes17

Type nodes represent the type of an object or expression. Named types reference the corresponding type18

declarations. The type of a function is its function pointer type (same as standard C). With the addition of19

type parameters, named types may contain a list of parameter values (actual parameter types).20

2.1.3 Statement Nodes21

Statement nodes represent the executable statements in the program, including basic expression statements,22

control flows and blocks. Local declarations (within a block statement) are represented as declaration state-23

ments.24

2.1.4 Expression Nodes25

Some expressions are represented differently before and after the resolution stage:26

• Name expressions: NameExpr pre-resolution, VariableExpr post-resolution27

• Member expressions: UntypedMemberExpr pre-resolution, MemberExpr post-resolution28

• Function call expressions (including overloadable operators): UntypedExpr pre-resolution,29

ApplicationExpr post-resolution30

The pre-resolution representation contains only the symbols. Post-resolution links them to the actual vari-31

able and function declarations.32

2.2 Compilation Passes33

Compilation steps are implemented as passes, which follows a general structural recursion pattern on the34

syntax tree.35

The basic workflow of compilation passes follows preorder and postorder traversal on the AST data-36

structure, implemented with visitor pattern, and can be loosely described with the following pseudocode:37

Pass::visit(node t node) {38

previsit(node);39

if (visit children)40

2.3 Data Structure Change (new-ast) 3

for each child of node:1

child.accept(this);2

postvisit(node);3

}4

Operations in previsit happen in preorder (top to bottom) and operations in postvisit happen in postorder5

(bottom to top). The precise order of recursive operations on child nodes can be found in Common/PassVisitor.impl.h6

(old) and AST/Pass.impl.hpp (new).7

Implementations of compilation passes follow certain conventions:8

• Passes should not directly override the visit method (Non-virtual Interface principle); if a pass desires9

different recursion behaviour, it should set visit children to false and perform recursive calls manually10

within previsit or postvisit procedures. To enable this option, inherit from the WithShortCircuiting11

mixin.12

• previsit may mutate the node but must not change the node type or return nullptr.13

• postvisit may mutate the node, reconstruct it to a different node type, or delete it by returning nullptr.14

• If the previsit or postvisit method is not defined for a node type, the step is skipped. If the return15

type is declared as void, the original node is returned by default. These behaviours are controlled by16

template specialization rules; see Common/PassVisitor.proto.h (old) and AST/ Pass.proto.hpp (new)17

for details.18

Other useful mixin classes for compilation passes include:19

• WithGuards allows saving and restoring variable values automatically upon entering/exiting the current20

node.21

• WithVisitorRef creates a wrapped entity for the current pass (the actual argument passed to recursive22

calls internally) for explicit recursion, usually used together with WithShortCircuiting.23

• WithSymbolTable gives a managed symbol table with built-in scoping-rule handling (e.g., on entering24

and exiting a block statement)25

NOTE: If a pass extends the functionality of another existing pass, due to C++ overloading resolution rules,26

it must explicitly introduce the inherited previsit and postvisit procedures to its own scope, or otherwise27

they are not picked up by template resolution:28

class Pass2: public Pass1 {29

using Pass1::previsit;30

using Pass1::postvisit;31

// new procedures32

}33

2.3 Data Structure Change (new-ast)34

It has been observed that excessive copying of syntax tree structures accounts for a majority of compu-35

tation cost and significantly slows down the compiler. In the previous implementation of the syntax tree,36

every internal node has a unique parent; therefore all copies are required to duplicate the entire subtree.37

A new, experimental re-implementation of the syntax tree (source under directory AST/ hereby referred to38

as “new-ast”) attempts to overcome this issue with a functional approach that allows sharing of common39

sub-structures and only makes copies when necessary.40

The core of new-ast is a customized implementation of smart pointers, similar to std::shared ptr and41

std::weak ptr in the C++ standard library. Reference counting is used to detect sharing and allowing certain42

optimizations. For a purely functional (immutable) data-structure, all mutations are modelled by shallow43

4 2.3 Data Structure Change (new-ast)

copies along the path of mutation. With reference counting optimization, unique nodes are allowed to be1

mutated in place. This however, may potentially introduce some complications and bugs; a few issues are2

discussed near the end of this section.3

2.3.1 Source: AST/Node.hpp4

Class ast::Node is the base class of all new-ast node classes, which implements reference counting mech-5

anism. Two different counters are recorded: “strong” reference count for number of nodes semantically6

owning it; “weak” reference count for number of nodes holding a mere reference and only need to observe7

changes. Class ast::ptr base is the smart pointer implementation and also takes care of resource manage-8

ment.9

Direct access through the smart pointer is read-only. A mutable access should be obtained by calling10

shallowCopy or mutate as below.11

Currently, the weak pointers are only used to reference declaration nodes from a named type, or a vari-12

able expression. Since declaration nodes are intended to denote unique entities in the program, weak pointers13

always point to unique (unshared) nodes. This property may change in the future, and weak references to14

shared nodes may introduce some problems; see mutate function below.15

All node classes should always use smart pointers in structure definitions versus raw pointers. Function16

void ast::Node::increment(ref type ref)17

increments this node’s strong or weak reference count. Function18

void ast::Node::decrement(ref type ref, bool do delete = true)19

decrements this node’s strong or weak reference count. If strong reference count reaches zero, the node is20

deleted. NOTE: Setting do delete to false may result in a detached node. Subsequent code should manually21

delete the node or assign it to a strong pointer to prevent memory leak.22

Reference counting functions are internally called by ast::ptr base. Function23

template<typename node t>24

node t * shallowCopy(const node t * node)25

returns a mutable, shallow copy of node: all child pointers are pointing to the same child nodes. Function26

template<typename node t>27

node t * mutate(const node t * node)28

returns a mutable pointer to the same node, if the node is unique (strong reference count is 1); otherwise,29

it returns shallowCopy(node). It is an error to mutate a shared node that is weak-referenced. Currently this30

does not happen. A problem may appear once weak pointers to shared nodes (e.g., expression nodes) are31

used; special care is needed.32

NOTE: This naive uniqueness check may not be sufficient in some cases. A discussion of the issue is33

presented at the end of this section. Functions34

template<typename node t, typename parent t, typename field t, typename assn t>35

const node t * mutate field(const node t * node, field t parent t::* field, assn t && val)36

template<typename node t, typename parent t, typename coll t, typename ind t,37

typename field t>38

const node t * mutate field index(const node t * node, coll t parent t::* field, ind t i,39

field t && val)40

are helpers for mutating a field on a node using pointer to a member function (creates shallow copy when41

necessary).42

3 Compiler Algorithm Documentation 5

P1 P2

A

B count: 1

count: 2

Figure 1: Deep sharing of nodes

2.3.2 Issue: Undetected Sharing1

The mutate behaviour described above has a problem: deeper shared nodes may be mistakenly considered2

as unique. Figure 1 shows how the problem could arise: Given the tree rooted at P1, which is logically the3

chain P1-A-B, and P2 is irrelevant, assume mutate(B) is called. The algorithm considers B as unique since4

it is only directly owned by A. However, the other tree P2-A-B indirectly shares the node B and is therefore5

wrongly mutated.6

To partly address this problem, if the mutation is called higher up the tree, a chain mutation helper can7

be used.8

2.3.3 Source: AST/Chain.hpp9

Function10

template<typename node t, Node::ref type ref t>11

auto chain mutate(ptr base<node t, ref t> & base)12

returns a chain mutator handle that takes pointer-to-member to go down the tree, while creating shallow13

copies as necessary; see struct chain mutator in the source code for details.14

For example, in the above diagram, if mutation of B is wanted while at P1, the call using chain mutate15

looks like the following:16

chain mutate(P1.a)(&A.b) = new value of b;17

NOTE: if some node in chain mutate is shared (therefore shallow copied), it implies that every node further18

down is also copied, thus correctly executing the functional mutation algorithm. This example code creates19

copies of both A and B and performs mutation on the new nodes, so that the other tree P2-A-B is untouched.20

However, if a pass traverses down to node B and performs mutation, for example, in postvisit(B), information21

on sharing higher up is lost. Since the new-ast structure is only in experimental use with the resolver22

algorithm, which mostly rebuilds the tree bottom-up, this issue does not actually happen. It should be23

addressed in the future when other compilation passes are migrated to new-ast and many of them contain24

procedural mutations, where it might cause accidental mutations to other logically independent trees (e.g.,25

common sub-expression) and become a bug.26

3 Compiler Algorithm Documentation27

This compiler algorithm documentation covers most of the resolver, data structures used in variable and28

expression resolution, and a few directly related passes. Later passes involving code generation are not29

included yet; documentation for those will be done latter.30

6 3.1 Symbol Table

3.1 Symbol Table1

NOTE: For historical reasons, the symbol-table data-structure is called indexer in the old implementation.2

Hereby, the name is changed to SymbolTable. The symbol table stores a mapping from names to declarations,3

implements a similar name-space separation rule, and provides the same scoping rules as standard C.14

The difference in name-space rule is that typedef aliases are no longer considered ordinary identifiers. In5

addition to C tag-types (struct, union, enum), C

A

introduces another tag type, trait, which is a named6

collection of assertions.7

3.1.1 Source: AST/SymbolTable.hpp8

Function9

SymbolTable::addId(const DeclWithType * decl)10

provides name mangling of identifiers, since C

A

allows overloading of variables and functions. The mangling11

scheme is closely based on the Itanium C++ ABI,2 while making adaptations to C

A

specific features, mainly12

assertions and overloaded variables by type.13

Naming conflicts are handled by mangled names; lookup by name returns a list of declarations with the14

same identifier name. Functions15

SymbolTable::addStruct(const StructDecl * decl)16

SymbolTable::addUnion(const UnionDecl * decl)17

SymbolTable::addEnum(const EnumDecl * decl)18

SymbolTable::addTrait(const TraitDecl * decl)19

add a tag-type declaration to the symbol table. Function20

SymbolTable::addType(const NamedTypeDecl * decl)21

adds a typedef alias to the symbol table.22

C Incompatibility Note: Since C

A

allows using struct, union and enum type-names without a prefix23

keyword, as in C++, typedef names and tag-type names cannot be disambiguated by syntax rules. Currently24

the compiler puts them together and disallows collision. The following program is valid C but invalid C

A

25

(and C++):26

struct A {};27

typedef int A; // gcc: ok, cfa: Cannot redefine typedef A28

struct A sa; // C disambiguates via struct prefix29

A ia;30

In practices, such usage is extremely rare, and hence, this change (as in C++) has minimal impact on existing31

C programs. The declaration32

struct A {};33

typedef struct A A; // A is an alias for struct A34

A a;35

struct A b;36

is not an error because the alias name is identical to the original. Finally, the following program is allowed37

in C

A

:38

typedef int A;39

void A(); // name mangled40

// gcc: A redeclared as different kind of symbol, cfa: ok41

because the function name is mangled.42

1ISO/IEC 9899:1999, Sections 6.2.1 and 6.2.3.
2https://itanium-cxx-abi.github.io/cxx-abi/abi.html, Section 5.1

https://itanium-cxx-abi.github.io/cxx-abi/abi.html

3.2 Type Environment and Unification 7

3.2 Type Environment and Unification1

The following core ideas underlie the parametric type-resolution algorithm. A type environment organizes2

type parameters into equivalent classes and maps them to actual types. Unification is the algorithm that3

takes two (possibly parametric) types and parameter mappings, and attempts to produce a common type by4

matching information in the type environments.5

The unification algorithm is recursive in nature and runs in two different modes internally:6

• Exact unification mode requires equivalent parameters to match perfectly.7

• Inexact unification mode allows equivalent parameters to be converted to a common type.8

For a pair of matching parameters (actually, their equivalent classes), if either side is open (not bound to a9

concrete type yet), they are combined.10

Within the inexact mode, types are allowed to differ on their cv-qualifiers (e.g., const, volatile, etc.);11

additionally, if a type never appear either in a parameter list or as the base type of a pointer, it may also12

be widened (i.e., safely converted). As C

A

currently does not implement subclassing as in object-oriented13

languages, widening conversions are only on the primitive types, e.g., conversion from int to long int.14

The need for two unification modes comes from the fact that parametric types are considered compatible15

only if all parameters are exactly the same (not just compatible). Pointer types also behaves similarly; in16

fact, they may be viewed as a primitive kind of parametric types. int * and long * are different types, just17

like vector(int) and vector(long) are, for the parametric type *(T) / vector(T), respectively.18

The resolver uses the following public functions:319

3.2.1 Source: ResolvExpr/Unify.cc20

Function21

bool unify(const Type * type1, const Type * type2, TypeEnvironment & env,22

OpenVarSet & openVars, const SymbolTable & symtab, Type *& commonType)23

returns a boolean indicating if the unification succeeds or fails after attempting to unify type1 and type224

within current type environment. If the unify succeeds, env is modified by combining the equivalence25

classes of matching parameters in type1 and type2, and their common type is written to commonType. If the26

unify fails, nothing changes. Functions27

bool typesCompatible(const Type * type1, const Type * type2, const SymbolTable & symtab,28

const TypeEnvironment & env)29

bool typesCompatibleIgnoreQualifiers(const Type * type1, const Type * type2,30

const SymbolTable & symtab, const TypeEnvironment & env)31

return a boolean indicating if types type1 and type2 can possibly be the same type. The second version32

ignores the outermost cv-qualifiers if present.4 These function have no side effects.33

NOTE: No attempt is made to widen the types (exact unification is used), although the function names34

may suggest otherwise, e.g., typesCompatible(int, long) returns false.35

3.3 Expression Resolution36

The design of the current version of expression resolver is outlined in the Ph.D. thesis by Aaron Moss [3].37

A summary of the resolver algorithm for each expression type is presented below.38

3Actual code also tracks assertions on type parameters; those extra arguments are omitted here for conciseness.
4In const int * const, only the second const is ignored.

8 3.4 Conversion and Application Cost

All overloadable operators are modelled as function calls. For a function call, interpretations of the1

function and arguments are found recursively. Then the following steps produce a filtered list of valid2

interpretations:3

1. From all possible combinations of interpretations of the function and arguments, those where argu-4

ment types may be converted to function parameter types are considered valid.5

2. Valid interpretations with the minimum sum of argument costs are kept.6

3. Argument costs are then discarded; the actual cost for the function call expression is the sum of7

conversion costs from the argument types to parameter types.8

4. For each return type, the interpretations with satisfiable assertions are then sorted by actual cost9

computed in step 3. If for a given type, the minimum cost interpretations are not unique, that return10

type is ambiguous. If the minimum cost interpretation is unique but contains an ambiguous argument,11

it is also ambiguous.12

Therefore, for each return type, the resolver produces:13

• no alternatives14

• a single valid alternative15

• an ambiguous alternative16

NOTE: an ambiguous alternative may be discarded at the parent expressions because a different return type17

matches better for the parent expressions.18

The non-overloadable expressions in C

A

are: cast expressions, address-of (unary &) expressions, short-19

circuiting logical expressions (&&, ||) and ternary conditional expression (?:).20

For a cast expression, the convertible argument types are kept. Then the result is selected by lowest21

argument cost, and further by lowest conversion cost to target type. If the lowest cost is still not unique22

or an ambiguous argument interpretation is selected, the cast expression is ambiguous. In an expression23

statement, the top level expression is implicitly cast to void.24

For an address-of expression, only lvalue results are kept and the minimum cost is selected.25

For logical expressions && and ||, arguments are implicitly cast to bool, and follow the rules fr cast26

expression above.27

For the ternary conditional expression, the condition is implicitly cast to bool, and the branch expres-28

sions must have compatible types. Each pair of compatible branch expression types produce a possible29

interpretation, and the cost is defined as the sum of the expression costs plus the sum of conversion costs to30

the common type.31

3.4 Conversion and Application Cost32

There were some unclear parts in the previous documentation in the cost system, as described in the Moss33

thesis [3], section 4.1.2. Some clarification are presented in this section.34

1. Conversion to a type denoted by parameter may incur additional cost if the match is not exact. For35

example, if a function is declared to accept (T, T) and receives (int, long), T is deducted long and an36

additional widening conversion cost is added for int to T.37

2. The specialization level of a function is the sum of the least depth of an appearance of a type parameter38

(counting pointers, references and parameterized types), plus the number of assertions. A higher39

specialization level is favoured if argument conversion costs are equal.40

3.5 Assertion Satisfaction 9

3. Coercion of pointer types is only allowed in explicit cast expressions; the only allowed implicit pointer1

casts are adding qualifiers to the base type and cast to void*, and these counts as safe conversions.2

Note that implicit cast from void * to other pointer types is no longer valid, as opposed to standard C.3

3.5 Assertion Satisfaction4

The resolver tries to satisfy assertions on expressions only when it is needed: either while selecting from5

multiple alternatives of a same result type for a function call (step 4 of resolving function calls) or upon6

reaching the top level of an expression statement.7

Unsatisfiable alternatives are discarded. Satisfiable alternatives receive implicit parameters: in C

A

,8

parametric functions may be separately compiled, as opposed to C++ templates which are only compiled at9

instantiation. Given the parametric function-definition:10

forall (otype T | {void foo(T);})11

void bar (T t) { foo(t); }12

the function bar does not know which foo to call when compiled without knowing the call site, so it requests13

a function pointer to be passed as an extra argument. At the call site, implicit parameters are automatically14

inserted by the compiler.15

Implementation of implicit parameters is discussed in Appendix A.3.16

4 Tests17

4.1 Test Suites18

Automatic test suites are located under the tests/ directory. A test case consists of an input CFA source19

file (suffix .cfa), and an expected output file located in the tests/.expect/ directory, with the same file name20

ending with suffix .txt. For example, the test named tests/tuple/tupleCast.cfa has the following files, for21

example:22

tests/23

tuple/24

.expect/25

tupleCast.txt26

tupleCast.cfa27

If compilation fails, the error output is compared to the expect file. If the compilation succeeds but does not28

generate an executable, the compilation output is compared to the expect file. If the compilation succeeds29

and generates an executable, the executable is run and its output is compared to the expect file. To run the30

tests, execute the test script test.py under the tests/ directory, with a list of test names to be run, or all (or31

make all tests) to run all tests. The test script reports test cases fail/success, compilation time and program32

run time. To see all the options available for test.py using the help option.33

4.2 Performance Reports34

To turn on performance reports, pass the XCFA S flag to the compiler. Three kinds of performance reports35

are available:36

1. Time, reports time spent in each compilation step37

2. Heap, reports number of dynamic memory allocations, total bytes allocated, and maximum heap38

memory usage39

3. Counters, for certain predefined statistics; counters can be registered anywhere in the compiler as a40

static object, and the interface can be found at Common/Stats/Counter.h.41

10 A.3 Implementation of Parametric Functions

It is suggested to run performance tests with optimization (g++ flag O3).1

A Appendix2

A.1 Kinds of Type Parameters3

A type parameter in a forall clause has 3 kinds:4

1. dtype: any data type (built-in or user defined) that is not a concrete type.5

A non-concrete type is an incomplete type such as an opaque type or pointer/reference with an implicit6

(pointer) size and implicitly generated reference and dereference operations.7

2. otype: any data type (built-in or user defined) that is concrete type.8

A concrete type is a complete type, i.e., types that can be used to create a variable, which also implic-9

itly asserts the existence of default and copy constructors, assignment, and destructor5 .10

3. ttype: tuple (variadic) type.11

Restricted to the type for the last parameter in a function, it provides a type-safe way to implement12

variadic functions. Note however, that it has certain restrictions, as described in the implementation13

section below.14

A.2 GNU C Nested Functions15

C

A

is designed to be mostly compatible with GNU C, an extension to ISO C99 and C11 standards. The C

A

16

compiler also implements some language features by GCC extensions, most notably nested functions.17

In ISO C, function definitions are not allowed to be nested. GCC allows nested functions with full18

lexical scoping. The following example is taken from GCC documentation6 :19

void bar(int * array, int offset, int size) {20

int access(int * array, int index) { return array[index + offset]; }21

int i;22

/* ... */23

for (i = 0; i < size; i++)24

/* ... */ access (array, i) /* ... */25

}26

GCC nested functions behave identically to C++ lambda functions with default by-reference capture (stack-27

allocated, lifetime ends upon exiting the declared block), while also possible to be passed as arguments with28

standard function pointer types.29

A.3 Implementation of Parametric Functions30

C

A

implements parametric functions using the implicit parameter approach: required assertions are passed31

to the callee by function pointers; size of a parametric type must also be known if referenced directly (i.e.,32

not as a pointer).33

The implementation is similar to the one from Scala7, with some notable differences in resolution:34

1. All types, variables, and functions are candidates of implicit parameters35

2. The parameter (assertion) name must match the actual declarations.36

For example, the C

A

function declaration37

5C

A

implements the same automatic resource management (RAII) semantics as C++.
6https://gcc.gnu.org/onlinedocs/gcc/Nested-Functions.html
7https://www.scala-lang.org/files/archive/spec/2.13/07-implicits.html

https://gcc.gnu.org/onlinedocs/gcc/Nested-Functions.html
https://www.scala-lang.org/files/archive/spec/2.13/07-implicits.html

REFERENCES 11

forall(otype T | { int foo(T, int); })1

int bar(T);2

after implicit parameter expansion, has the actual signature8
3

int bar(T, size t, void (*)(T&), void (*)(T&), int (*)(T, int));4

The implicit parameter approach has an apparent issue: when the satisfying declaration is also parametric,5

it may require its own implicit parameters too. That also causes the supplied implicit parameter to have6

a different actual type than the nominal type, so it cannot be passed directly. Therefore, a wrapper with7

matching actual type must be created, and it is here where GCC nested functions are used internally by the8

compiler.9

Consider the following program:10

int assertion(int);11

12

forall(otype T | { int assertion(T); })13

void foo(T);14

15

forall(otype T | { void foo(T); })16

void bar(T t) {17

foo(t);18

}19

The C

A

compiler translates the program to non-parametric form9
20

// ctor, dtor and size arguments are omitted21

void foo(T, int (*)(T));22

23

void bar(T t, void (*foo)(T)) {24

foo(t);25

}26

However, when bar(1) is called, foo cannot be directly provided as an argument:27

bar(1, foo); // WRONG: foo has different actual type28

and an additional step is required:29

{30

void foo wrapper(int t) {31

foo(t, assertion);32

}33

bar(1, foo wrapper);34

}35

Nested assertions and implicit parameter creation may continue indefinitely. This issue is a limitation of36

implicit parameter implementation. In particular, polymorphic variadic recursion must be structural (i.e.,37

the number of arguments decreases in any possible recursive calls), otherwise code generation gets into an38

infinite loop. The C

A

compiler sets a limit on assertion depth and reports an error if assertion resolution39

does not terminate within the limit (as for templates in C++).40

8otype also requires the type to have constructor and destructor, which are the first two function pointers preceding the one for foo.
9In the final code output, T needs to be replaced by an opaque type, and arguments must be accessed by a frame pointer offset table,

due to the unknown sizes. The presented code here is simplified for better understanding.

12 REFERENCES

References1

[1] Richard C. Bilson. Implementing overloading and polymorphism in C∀. Master’s thesis, School of2

Computer Science, University of Waterloo, 2003. http://plg.uwaterloo.ca/theses/BilsonThesis.pdf. 13

[2] Glen Jeffrey Ditchfield. Contextual Polymorphism. PhD thesis, Department of Computer Science,4

University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1, 1992. http://plg.uwaterloo.ca/theses/-5

DitchfieldThesis.pdf. 16

[3] Aaron Moss. C∀ Type System Implementation. PhD thesis, School of Computer Science, University of7

Waterloo, 2019. https://uwspace.uwaterloo.ca/handle/10012/14584. 1, 7, 88

http://plg.uwaterloo.ca/theses/BilsonThesis.pdf
http://plg.uwaterloo.ca/theses/DitchfieldThesis.pdf
https://uwspace.uwaterloo.ca/handle/10012/14584

	Contents
	Overview
	Compiler Framework
	AST Representation
	Declaration Nodes
	Type Nodes
	Statement Nodes
	Expression Nodes

	Compilation Passes
	Data Structure Change (new-ast)
	Source: AST/Node.hpp
	Issue: Undetected Sharing
	Source: AST/Chain.hpp

	Compiler Algorithm Documentation
	Symbol Table
	Source: AST/SymbolTable.hpp

	Type Environment and Unification
	Source: ResolvExpr/Unify.cc

	Expression Resolution
	Conversion and Application Cost
	Assertion Satisfaction

	Tests
	Test Suites
	Performance Reports

	Appendix
	Kinds of Type Parameters
	GNU C Nested Functions
	Implementation of Parametric Functions

	References

